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Abstract: The characterizations of probability distributions have been studied by several academics.
When a certain distribution is the only one that correlates with a given property, a characterization
theorem in probability and statistics is applicable. Additionally, a characterization is a particular dis-
tributional or statistical property of a statistic or statistics that describes the corresponding stochastic
model in a unique way. Some scholars proposed that real-world data should be characterized under
certain criteria before a probability distribution is applied to it. This research investigates the char-
acterization of specific probability distributions using advanced statistical methods. Characterization
theorems are fundamental in probability and statistics, as they establish the unique properties that de-
fine a given distribution. The study focuses on a novel approach to characterizing truncated negative
binomial and logarithmic series distributions through conditional expectation and variance functions.
The necessary and sufficient conditions are derived for these characterizations, with a particular em-
phasis on the failure rate as a key parameter. The findings provide a robust framework for identifying
underlying distributions based on their failure rates and conditional properties. An illustrative example
is presented to demonstrate the practical application of this methodology, showcasing its potential for
uncovering the properties of unobserved distributions.
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1. Introduction

In statistical inference, probability distribution characterizations are crucial topics. The literature
has published numerous articles on characterizing distributions in statistics, including those by Arnold
[3], Srivastava [33], Sheetrari [31], Zijlstra [43], and Dallas [9]. Numerous results are covered in the
survey book by Kagan et al. [19], the most current remarks by Galambos and Kotz [11], and Nagaraja
[23]. The survey of Kotz [20] has a fair summary of the main characterization directions. In particular,
several characterizations of the exponential distribution have been extensively discussed because of its
simplicity and applicability. Quite a lot of attention has been paid to the characterization of the Poisson
distribution by Rao and Rubin [26], which used the Bernstein representation theorem. Srivastava and
Srivastava [34] used similar concepts to characterize the binomial model. Shanbhag and Clark [29] es-
tablished a variation of the Rao-Rubin findings. The 3x3 Bhattacharya covariance matrix’s diagonality
was used by Shanbhag [28] to characterize the Poisson and binomial distributions from the family
of random variables with exponential-type distribution. Gamma distribution and negative binomial
distribution (NBD) were characterized by Osaki and Li [25]. Using the mean residual life function
(MRF) in combination with the failure rate of the characterized distributions, Ahmed [1] used the con-
nection between conditional expectations and hazard rate functions to characterize the beta, binomial,
and Poisson distributions. Kyriakoussis [21] characterized the modified logarithmic series distribution
(LSD) using the conditional distribution of two random variables, X and Y, and the regression function
E(Y | Y = y). Ramalingam and Jagbir [30] used the uniformly minimum variance unbiased estimator
of 8 in a sample of size n to characterize LSD. He also used his characterization to build a test statistic
to test whether the sample follows an LSD. Su and Huang [36] investigated conditional expectation-
based distribution characterizations. Nanda [24] conducted a study on the characterizations of entirely
continuous random variables using the failure rate functions and MRF. The characterization of distri-
butions by truncated moments was introduced by Laurent [22]. The distributions were described by
Gupta and Gupta [12] using the seconds of residual life.

In life testing situations, if X is the life of a component, then the random variable (X —m | X > m) is
called the residual life function (RLF), and the quantity E(X —m | X > m) is called the MRF. Another
quantity which has been of great interest is the variance of RLF, o'%(m) = V(X | X > m), see, e.g. Dallas
[8], Hall and Hellner [14], and Yehia and Ahmed [39]. Gupta [13] studied the monotonicity properties
of o2.(m) for some non-parametric families of distributions commonly appearing in reliability theory.

New advancements have further enriched the field by introducing novel distributions and characteri-
zation methods tailored to complex data scenarios. For instance, Almetwally et al. [2] characterized the
Marshall-Olkin alpha power Rayleigh distribution using moment-based properties, showing its utility
in engineering applications. Similarly, Hamedani et al. [15] explored the type I quasi-Lambert family
through regression-based characterizations, offering insights into flexible modeling. Ibrahim et al. [17]
expanded the Nadarajah-Haghighi model with copula-based approaches, incorporating censored and
uncensored validation, while Shehata et al. [32] validated the Nikulin-Rao-Robson distribution using
goodness-of-fit measures for censored data. In the realm of lifetime distributions, Almetwally et al.
[40] proposed an overview of discrete distributions, and Alyami et al. [41] introduced an new life
time distribution model with applications in medical and engineering. Furthermore, Yousof et al. [42]
developed a discrete generator for count data, characterized through moment and reliability properties,
aligning closely with the discrete modeling focus of our study. These contemporary works underscore
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the ongoing evolution of characterization techniques, motivating our investigation into distributions
with specific structural constraints, such as truncation. This study provides the necessary and sufficient
conditions for characterizing the zero-truncated negative binomial distribution (ZTNBD) and LSD us-
ing conditional expectation and variance in terms of failure rates. Previous works, such as those of
Ahmed [1] for binomial distribution, Osaki and Li [25] for NBD or Kyriakoussis [21] for LSD, have
utilized different approaches (e.g., regression functions or mean residual life). Our approach lever-
ages the failure rate, a widely interpretable and measurable quantity in reliability and survival analysis,
to uniquely identify these distributions, offering a fresh perspective on their statistical properties. The
application of conditional expectation and variance to truncated distributions such as ZTNBD is partic-
ularly innovative. Although the standard NBD has been extensively studied, the zero-truncated variant,
common in data sets that exclude zero counts (e.g., healthcare, economics, and marketing), has received
less attention in terms of characterization. In this study, we try to fill this gap by providing a robust
theoretical framework tailored to such scenarios. By integrating failure rates into the characterization
process, our work unifies concepts from reliability theory with probabilistic modeling. This is distinct
from previous characterizations that relied on other statistical properties (e.g., Bhattacharya covariance
by Shanbhag [28] or truncated moments by Laurent [22]). This unification enhances the theoretical
understanding of these distributions and their behavior under truncation. A necessary and sufficient
condition for identifying ZTNBD is given in Section 2. A necessary and sufficient condition required
for determining LSD is provided in Section 3. Examples of the uses of these results are provided in
Section 4.

2. Characterization of Negative Binomial Truncated at Zero

NBD is widely recognized for its ability to model count data characterized by overdispersion, where
the variance exceeds the mean. This distribution finds applications across various disciplines due to
its flexibility and robustness. For instance, in accident statistics, it is used to model the frequency
of incidents, while in demographic studies, it effectively represents stochastic changes in population
sizes (see Hilbe [16]). In psychology, NBD is often applied to model event frequencies, whereas in
economics, it serves as a logarithmic distribution for analyzing time series data; see Cameron and
Trivedi [4]. In addition, it is frequently employed in market research to analyze consumer behavior, in
medical studies for disease modeling, and in military contexts for resource allocation. Its utility also
extends to library science, where it models book-lending patterns. NBD’s adaptability to a wide range
of data scenarios, particularly those involving overdispersion, has made it a preferred alternative to the
Poisson distribution, which assumes equal mean and variance; see Ridout et al. [27]. NBD has the
form

N+z-1

f(z,N,9)=( N1

)(9)”(1—9)1, z=0,1,...;N>0 (2.1)

so that
f(0) = ©®)".

ZTNBD is used to model scenarios where zero occurrences are excluded, making it suitable for datasets
that inherently lack zero counts. To calculate probabilities for the truncated distribution, the probability
mass function (PMF) of the standard NBD must be adjusted by dividing it by [1 — f(0)], where f(0)
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represents the probability of zero occurrences. This adjustment ensures that the probabilities sum to
one, maintaining the properties of a valid distribution. The resulting PMF is expressed in terms of the
number of failures (z) observed before achieving a fixed number of successes (N), and it is applicable
in cases such as modeling repeated attempts or trial outcomes where a minimum threshold must be
met (see Hilbe [16]). This distribution is particularly valuable in fields like economics, healthcare, and
marketing, where truncated data is common, and it offers a flexible framework for analyzing non-zero
event frequencies. The PMF is

(N;igl)(g)N(l _ Q)Z

(2.2)
1 -V ’

f(z,N,0) =

where z = 1,2, ..., and f(z) represents the probability of observing z failures before achieving the N
success in a total of (N + z) trials.

This distribution is reparameterized in the statistical literature using Q = % and P = %9, such that
Q — P = 1, enabling more flexible analysis in various applications. Its PMF accounts for the trunca-
tion at zero by adjusting the standard negative binomial PMF to ensure valid probability assignments,
particularly for scenarios involving non-zero events; see Hilbe [16].

~(N+z-1\(PY(, P\
=(1-07" —{1-=]. 2.3
f@=(1-0%) (N—l)(Q)( Q) 2
ZTNBD is characterized by its mean E(Z) = % and variance V(Z) =
lz_v g%v [1 - g] [(1 — Q—N)_1 - 1], providing a robust framework for modeling overdispersed count

data in fields such as healthcare, finance, and ecological studies. The use of conditional expectations
further enhances its applicability by allowing precise modeling of truncated data scenarios.

Theorem 2.1. Let Z be a positive discrete random variable with PMF defined in (2.3). Let g =q,
and (1 - g) = w, then Z is ZINBD with PMF f(z; w) if and only if (iff)

N +1
EZ1Z>r =2 hr 1), forall integers r > 0 (2.4)
w w

where h(r+1) = f(r+1)/F(r + 1) is a failure rate at r + 1 and F(r + 1) is the survival function at r + 1.

Under the conditions of Theorem 2.1, we start by proving the following set of lemmas.
Lemma 2.1.

g N+r+1
2;w) = I; =0,1,2,...
f(r+ ’w) N( N—l f( ’w)9 r 07 b b
Proof:
o M (N+r+2-1) ., » 3
fr+2zw)=(1-07) ( Vo ) oV, r=0,1,2,...
w+q=1, 0<w,g<1
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(1 ANy (N+r+1)!
‘(1 ¢ ) (N = D!(r+2)!
_qN+r+1) (1 _ Q_N)—l (N + r)q’”a)N

r+2 N

r+2 N-1
q(N+r+1)
r+2

fr+1w0)

g N+r+1
- N\ N-

Lemma22.5, =32, 2@ w) = 2Fr+ L) + 2L f(r + L o).
Proof:

)f(l w)

[

Sa= ), f@w)

z=r+1

= (N —1v
:1— -N IZZ( 2 )
1)!!

e N -1
=(1-0™)" 2 (N (—J;)f(z—)l)vqu’ using (z— 1) =j
1

- o N+
:(1_QN)1Z(+1){()'q]1wN

Na(1-0 ' ) (e e

sal1-0) SN o

= NqF(r; w) + q [rf(r;w) + S 4]
5S4 =qSa=NgF(r,w) + qrf(r; w)
S wS 4 = NgF(r; w) + qrf(r; w), so
NgF(r; w) N qrf(r;w)
w w

~.
Il

SA:

Since

F(r+ L) = F(r;w) — f(r,w),

SO
Ngq _ - qr
Sa=—I[F(r+lLow+ f(rno]+—f(rw)
w w
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q(N +r)

f(ryw)

Ng -
SA:—qF(r+1;a))+
w

By Lemma 2.1

Ng - +1
Sa=YEGr+10)+ 2 f 0+ 1),
w w

Proof of Theorem 2.1
A. Necessity. Using Lemma 2.2, we have

EZ|Z>7r) =S4/Fr+1;w)
N 1
_Na r+
w

h(r + 1), for all integers r > 0

B. Sufficiency. Eq (2.4) may be written using an unknown function f(z):

(9]

Ng < 1
> @=L f@+ =+ D).

z=r+1 z=r+1

As aresult, we may get the corresponding set of equations shown below:

N 1 2
+ D+ D=2 )+ e+ ) -T2 f+2), r=0,1,2,.
w w w
We’ve rearranged both sides:

_gN+r+1)
f(r+2)= ST — f(r+1).

By using Lemma 2.1 to the recurrent formula above, we get

flz;w) =
Using .72, f(z; w) = 1, we have

qZ‘I(N+z—1

1; =1,2,...
N N—l )f( ,(1)), < s~

fLwy=N(1-0™)" g,
Then

b4 N
f(Z;cu)=(1—Q_N)_1 (N;le)(g) (1—5) , z=1,2,...

It is the ZTNBD PMF.
We use conditional variance to characterize a ZTNBD in the following:

Theorem 2.2. A positive discrete random variable Z has a ZTNBD iff

VZ|Z>r)=Ah), (2.5)

where A(h) = % — (r(:—thz(r + 1)+ 3—21(1 + rw — Ng)h(r + 1). For all integers r > 0, where h(r + 1) =
f(r+ 1)/E(r + 1) is the failure rate at r + 1.
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Under the conditions of Theorem 2.2, we start by proving the following set of lemmas.

Lemma 2.3.
B= sz( ]M (r+1)+r;“—21(Nq—rq+r+1)f(r+1).
z=r+1
Proof:
B= ) Zf@w) = ) - DfGw) + ) if@w)
z=r+1 z=r+1 z=r+1
= >, W= Df@Ew) +S4,
z=r+1

where .

Sa= ) iz

z=r+1

So,

[e9)

o -l (N+z-D!
2= 2 eV G
vl (NHz=DE

=[1-¢7] N-Diz-2)!"

z=r+1

using (z —2) =j

1_ _N Z(N+]+1) 2 N

4N =D
_sz —N Z(N"‘J_l)'
J,I(N—l)u'
= N + —1‘
+2Nq Z]( J )

-

_ N+j-D!
v 1-0] Z Jzﬁqw

j=r—1

-] Z (N+J—1)'
1)11

N+ j-1)!
taN 1_ _N Z(-”)v?

j=r—1
=N’@PF(r - 1)+ 2NG@ [(r = Df(r = 1)+ rf(r) + S 4]
+ @ | = D2 f(r = 1)+ P £() + B| + ¢’Lr = DfGr = 1)

+rf(r) + Sa] + N¢*E(r = 1).

(2.6)
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So,
B=N¢*F(r=1)+2Ng*(r — 1)f(r — 1) + 2Nrq*f(r) + 2Ng*S »

+ @ (r =1’ fr= D+ P@f(r) + @B+ ¢ (r= Df(r— 1)+ rq* f(r)
+@*SA+ NGPF(r—1)+S,.

Since

F(ry=F@r -1~ fr-1,

and

N -1
fiy = 22D

for+1) =

flr=1),

LED pi,

r+1

Therefore,

B :;[Nq(Nq + (1 + q)]F(r +1)
w(l-4q%
el U =g+ Ng+ DIfGr+ 1)
w(l-4q%

- [Ng(Ng + DIF(r+ 1) + —1
w(l - q) w(l - q)

1 _ r+1
= [Nq(Nq+ DF(r+1)+ 7[Nq—rq+r+ 11f(r+1).

[r—rg+Ng+1]f(r+1)

Then

Nqg(Ng + 1) N (r+ D(Ng+rw+1)
2

E(Z°1Z>r)=B/F(r+1)= a

h(r +1). 2.7)

w

Proof of Theorem 2.2
A. Necessity. Using Lemma 2.3, we have the following:

V(Z|Z>7r) =E(Z*|Z>7r)-E*Z|Z>7)

Ng(Ng + 1 1)(Ng - | N 2Ng(r+1

NaWgr ) Gt DWNg—rg+rt Dy, ypy N0 2N+ Dy
w w w w

2
- (”21) R0+ 1)

w

N +1)(1-Ng+ +1)?

:_§1+(r X 4 rw)h(r+1)—¥h2(r+l); for all integers r > 0.

w w w

B. Sufficiency. Eq (2.7) can be written with an unknown function f(z) :

S 2f@) = NgWq + 1) 3 f@+ "t NG = g+ r+ 11fG+ 1),
z=r+1 w z=r+1 w
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Therefore, we can get the following equivalent set of equations

Ng(Ng + 1) r+1 r+2
%f(rﬂn ——(Ng=rq+r+Df(r+1)-—

(Ng—(r+D)g+r+2)f(r+2);, r=0,1,2,...

r+1)*fr+1)=

Rearranging both sides, we have

N 1
Solving the above recurrence formula, we have, by Lemma 2.1
TN+ z-1
J(Zw) = qN ( Nfl )f(l;w); z=12,...
Using the fact
Zf(z; w) =1, wehave
z=1
-1
flwy=N[1-0"] qu", Viz,
) 3 NN +z-1 N B
fzw) = [1 -0 ] ( N1 )qzw , z=1,2,...
which is the ZTNBD.

3. Characterization of Logarithmic Series Distribution

LSD was first proposed by Fisher et al. [10] to study butterfly populations in the Malay Peninsula.
Williams [37] used LSD to model various datasets, such as the distribution of parasites, including the
count of head lice per host. Furthermore, Williams [36] applied this distribution to analyze the number
of publications by entomologists. Another notable application was by Williamson and Bretherton [38],
who utilized it to address an inventory control issue in the steel industry.

In a series of publications, including works by Chatfield et al. [7] and Chatfield ([5], [6]), the
authors discussed the use of LSD to model the distribution of quantities of a product purchased by a
buyer within a specific time frame. They noted that LSD can serve as a useful approximation for NBD
when the parameter N is very low (e.g., less than 0.1). The advantage of LSD lies in its reliance on
only one parameter 6, as opposed to the two parameters, N and p, required for NBD. In view of the
wide application of LSD, a characterization technique for such a distribution is presented.

The following theorems characterize LSD among discrete distributions defined on the set of positive
integers.

Theorem 3.1. Let Z be a non-negative discrete random variable with PMF f(z;0) and mean
aB(1 — 0)7!; then Z has a LSD with

&
f@o =22, z=1,2,...; 0<6<1, anda=—-1/In(1 - 6); iff
Z
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EZ|Z>r) = —h(r + 1), forall integerr > 0. 3.1

Proof:

We prove the theorem in two parts:

Necessity: If Z follows the LSD, then the conditional expectation E(Z | Z > r) satisfies the given form
in (3.1).

Sufficiency: If the conditional expectation E(Z | Z > r) satisfies the given form in (3.1), then Z must
follow the LSD.

1. Necessity

Assume Z follows the LSD, we need to show that the conditional expectation E[Z | Z > r] satisfies

E[Z|Z>r]:r+1'£(r+1)’
=0 For+1)
E[Z|Z>r]:M

Z;Hl f(Z; 9) ’
Substitute the PMF f(z;6) = ¢~. Then

oz
EIZ|Z>r]= S0
ZZ=r+1 7
Simplify the numerator and denominator:
QZ
E[Z|Z>r] = ZZ—“Q
z=r+l1 ?;

The numerator, Y32, %, is an infinite geometric series starting at z = r + 1. The first term is #"*!, and
the common ratio is 8. For a geometric series,

(o)

a
Zark = ——, where|r| <1,
= 1-r

we adjust the starting index accordingly.

o

Z gz — 9r+1 + 9r+2 + 0r+3 +

z=r+1

Factor out §"+!:

D E=0 A0+ )

z=r+1

The series inside the parentheses is > 6°, and for 0 < 6 < 1, we know:
= 1
-t
z=0
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So,
i HZ—0r+1Z'019Z: 9r+1
z=r+1 z=0 1-4

Recall that

Thus:

o —
E —=-In(1-6) - —.
Z — Z
z=1

z=r+1

Substitute the expressions for the numerator and denominator into the conditional expectation:

ElZ|Z>r] = 1-6 —
—In(1-60) -2, %
Now compute %:
a,gr+1 . © 00 o
fr+h=—0 FU+1%:§5fQﬁ):QEZ;?
z=r+l z=r+1
Therefore,
f(r+ 1) _ (lrg_:jl 0r+1

Fr+1) aS % +D¥, %
Substitute 3’22, £ = —In(1 - 6) - ¥7_, £, then

z=r+l 7

for+1) o+l
Fr+1)  (r+1)(-In(1-6)-37, %)

=17

Now, substitute into the conditional expectation:

r+1£(r+1) _ r+1 hr+ 1),
1-0Fr+1) 1-6

This proves the necessity part of the result.

E[Z|Z>r] =

Volume 4, Issue xxxx, 1-25



12

2.Sufficiency
Assume that the conditional expectation satisfies
+1 +1
ElZ|Z>r] = r . f(r ), for all integers r > 0.
1-60 Fr+1)

We need to show that Z must follow LSD. Recall the definition of conditional expectation:

Z;‘;Hl Zf(Z; 0)

ElZ|Z = .
Z12>11=5s "0

By assumption:
2 zf@0) r+l fr+1)
Y f@O)  1-60 Fr+1)

S2mzf@0 _r+l  fr+1)
Z;rﬂ f(Z’ 9) 1 - (7] Z:‘;Hl f(Z, 0) .
Cancel 377, f(z;6) from both sides

(o)

> ef@6) = :J’—lf(r 1),

z=r+1 - 9

Now express the sum as

) 0 r

D, @0 =) 2f@0) - ) 2f(0).

z=r+1 z=1 z=1

The first term is the mean of Z, which is

[ee)

af
Z:ZIZf(Z, 0) = E[Z] — 1__9
Thus:
N af r
:Zl d@h=1"¢" Z, 2f(:6).

Substitute into the recurrence relation:

0 < 1
= Y @) = T+ D)

z=1

Rearranging to solve for f(r + 1):

r+1|1-0

z=1

fre1) = ﬂ[“—g - Zf(z;G)],
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which simplifies to
ab 1-6

+1)=— - — 0

for+h=—= Py, Zf(z,)

We now verify that the solution to this recurrence relation is the PMF of LSD:

f(z:0) = a@z z=1,2,...
Base Case (r = 0)
For r = 0, the recurrence becomes
=212 0= af
This matches the LSD PMF: )

f@@:g%:w.

Assume the recurrence relation holds forz = 1,2,...,r. Then, forz =r + 1:

0 1-06
fr+1)= %—? Zf(z;@)

Substitute f(z;60) = 2% into the sum:

sz(z,é’)—Zz — -

z=1

This is a geometric series:

Substitute back: 0 1-0 0(1 — ")
o _ —_ Qr
L s e

2

at  ad(1-6) af™

Tt r+1  r+l
This matches the LSD PMF:
a,er+1
+1;0) = .
fir ) r+1
By induction, the recurrence relation implies that the PMF of Z must be
at®
f(z:0) = 7, z=1,2,...

where o = ln(_l 5 This completes the sufficiency part of the proof. Hence, Z ~ LSD.
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Theorem 3.2. . Let Z be a discrete non-negative random variable with PMF f(z;0) and mean 1"799.
Then Z has LSD with

92
f(z:0) = a—, z=1,2,..., 0<6<1,
Z
and
-1 '
¢= el
V(Z|Z > r)= B(h), (3.2)

where B(h) = %hv +1)- %hz(;ﬂ + 1) for all integers r > 0.

To prove the necessity and sufficiency of our characterization, we need the following lemma.
Proof:
We prove the theorem in two parts:

Necessity: If Z follows the LSD, then the conditional variance Var(Z | Z > r) satisfies the form given
in (3.2)

Sufficiency: If the conditional variance Var(Z | Z > r) satisfies the form given in (3.2), then Z must
follow the LSD.

1. Necessity
The conditional variance:

Var(Z | Z>r)=E[Z* | Z>rl - (BIZ | Z > r])*.

Substitute the expressions for E[Z | Z > r] and E[Z? | Z > r]:

Var(Z | Z > r) =

22 2 @0) (Z;’im 2f @ 9))2
Z;irﬂ f(Z; 9) Z?;Hl f(Z; 9) .

Substitute f(z;6) = %% into the sums:

o0

Z 2f(z;0) =« i &,

z=r+1 z=r+1

Z zzf(z;G) =« Z 76°.

z=r+1 z=r+1

We know that
© o 0r+1
- _ por+l _

D E=0) o= —
z=r+1 z=0
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and

[e9)

i 2 =9 Z(z +r+ DEF.

z=r+1 z=0
Using the known results,
N 0 N 1
= ——, =—,
2= 47 T

we get

0 r+1
9Z_9r+1 .
ZZ ((1—9)2 1—9)

z=r+1

Substitute the evaluated sums into the expressions for E[Z | Z > r] and E[Z* | Z > r].

a3, F (1 -06)

ElZ|Z>r]= — - = — -
a Zz:r+l 9? Zz—r+l %
r r+1
o . ZQZ 6+1 + L
E[Zz | 7> r] — ZZDO +1 gz ((109)2 - )
alzz:r+l Z Zz:r+l Z

Substitute E[Z | Z > r] and E[Z? | Z > r] into the expression for V(Z | Z > r):

r+1 r+l 2
WZ1Z5 9= (w7 + 1) [9’“/(1 - e))
Z?;r+1 HZ_Z Z;Zr+1 %
LetS =32, & ~. Then:
9r+1 ( + r+1) HH_I 2
(1-6)
VZ|Z>r)= .
@lz>n S ((1 - e)s)
g+l (6+(r+1)(1 9)) g2r+1)
(1-6)?
V(Z|Zz = - .
@lz>n= S R
Further simplification yields the following results:
r+DH(1+r—-ro (r+1)y?
VZI|Z>r) = 1=67 h(r+1) - a _Q)th(w D).

2. Sufficiency

Assuming that the conditional variance satisfies equation (3.2), we need to show that Z must follow
the LSD.
The conditional variance is

V(Z|Z>r)=E[Z*|Z>r]-E[Z|Z > r])?
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By assumption:

_ 2
B2 Z> - EZ|Z> = T DdAr=m), oy T+ D

2
1—07 (1—9)2h(r+1)

Express E[Z | Z > r] and E[Z? | Z > r] in terms of f(Z;6), the conditional expectation E[Z | Z > r]
is

EZ Z = )
Z12>r1=5e 0

and the conditional second moment E[Z? | Z > r] is

Y1 2 (z0)

E[Z*|Z>r] = N TR
z=r+1 )

Substitute E[Z | Z > r] and E[Z? | Z > r] into the conditional variance formula:

22 2 @0) (Z?;m 2f (@ 9>)2 _+Dd+r-ro T a4 ),

— — = h(r+1)—
Yoy f(z:0) Dir J(230) (1 -6)? (1-06)?
The above equation implies a recurrence relation for f(z; 6). To solve it, we proceed as follows:

1. Define S, = )22, f(z; ), this is the survival function F@r+1).
2. Express A(r + 1) in terms of f(z; 6):

fr+1)  fr+1)

h 1) ==
) F(I"+1) S,

3. Rewrite the conditional variance equation:
Substitute A(r + 1) = @ into the conditional variance equation:

Yo f@0 (X2, (0 2 DA +r=r0) fr+1)  (r+ D? f2(r+1)
S, _( S, ) N (1-6) s,  (1-62 §2

Substitute f(z;6) = 2% into the sums:

Tl zatf (ZS’;M 091)2 _ DA +r=rO) fr+1)  (r+ 1D’ fr+1)
S, S, B (1-6) S, 1-632 S§2 °

We know that
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Z 5 0r+l Zez _ 9r+1

z=r+1

and

Z =0 Z(Z +r+ D&

z=r+1
Using the known results:
(o) o 1
b 92 = b
Z:;J (1 - 0)2 ZZ:;A 1-6

we get

ot (7 +15) (a@“ﬂl—@UZ_(r+1X1+r—r@.fU+J)_(r+1Y.f%r+U
S, S, - (1-6)> S, (1-6?2 852

Simplify the left-hand side (LHS); thus, the LHS becomes

a0 (1 +r—r6) @262+

LHS = ~ .
(1-0)S, (1-6)yS?

Assume f(r+1) = Substltute this into the equation and verify that both sides are equal.
Substitute f(r + 1) = "9 " into the right-hand side (RHS):

(r+ DA +r-rb) af! (r+1)7? a?¢**D
(1 -6y G+ DS, (1-6? (r+1)382
a0 ' +r—-ro) PGV
(1-672S,  (1-6)725%

RHS =

The LHS and RHS are identical, confirming that f(r + 1) = conﬁrmlng that Z follows the LSD.

r+1 ’

4. Conclusion and Illustrative Example

The results of Theorems 2.1, 2.2, 3.1 and 3.2 are the first to characterize the two distributions with
regard to conditional expectation and variance. Since expected values and failure rates are more often
known than the entire probability distribution, this kind of characterization is more helpful.

These characteristics are easily applicable to real-world issues. See Johnson and Kotz [18] for
intriguing applications of LSD in population growth, distribution of animal species, sampling quadrats
for plant species, and economic applications.

Depending on a sample of values of Z truncated below at a specific r, one can readily estimate A(r).
Hence,

(r+ Dh(r + 1)
1-6

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue xxxx, 1-25



18

can be computed for every choice of r = 0, 1,2, .. .. The conditional expectation E(Z | Z > r) can also
be estimated as the truncated mean in the sample.
Hence, characterizations of ZTNBD and LSD are then checked by comparing £(Z | Z > r) with

N. + 1.
1+ I R+ 1y
w w
and {
r+1,
—h(r+1),
T—4 (r+1
respectively.

This study establishes novel characterizations of ZTNBD and LSD through conditional expecta-
tion and variance functions, with failure rates serving as a pivotal parameter. Theorems 2.1 and 2.2
provide the necessary and sufficient conditions for identifying ZTNBD, while Theorems 3.1 and 3.2
offer analogous results for LSD. These characterizations are particularly valuable because conditional
expectations, variances, and failure rates are often more readily estimable from empirical data than
complete distributional forms, enhancing their applicability in statistical modeling.

To illustrate the practical utility of these theoretical results, we present a detailed example using
Monte Carlo simulations, accompanied by step-by-step calculations and contextualized applications in
real-world scenarios. This example aims to demonstrate how researchers and practitioners can apply
our methodology to validate ZTNBD and LSD in data sets, thereby reinforcing the robustness and
relevance of our findings.

4.1. Detailed Illustrative Example

To validate the characterizations proposed in Theorems 2.1 ,2.2 , 3.1 , and 3.2 , we conducted
Monte Carlo simulations to generate datasets from the ZTNBD and LSD, each with a sample size of
5000 observations. The simulations allow us to compute empirical conditional expectations and vari-
ances, which are compared against their theoretical counterparts to confirm the distributions’ proper-
ties. Below, we provide a step-by-step explanation of the simulation process, calculations, and practical
applications, ensuring clarity for readers seeking to implement our methodology.

4.1.1. ZTNBD and LSD Simulation and Analysis

Practical context for ZTNBD: Consider a healthcare data set tracking the number of hospital visits
for a chronic condition, such as diabetes, among patients with at least one visit in a given year. Such
data often exhibits overdispersion and excludes zero counts, making ZTNBD an appropriate model.
Our characterization method can help validate whether the data follows a ZTNBD, informing resource
allocation strategies (e.g., staffing for frequent visitors).

Practical context for LSD: Imagine an ecological data set recording the number of individuals per
species in a biodiversity survey, such as butterfly counts in a forest, where only species with at least
one observed individual are included. The LSD is well-suited for modeling such rare event frequencies.
Our methodology can assist ecologists in confirming the LSD, aiding conservation efforts by accurately
characterizing species abundance distributions.

Simulation setup for ZTNBD: We simulate 5000 observations from a ZTNBD with parameters N =
(2,4) (number of successes) and w = (0.5,0.8) (success probability), where the PMF is given by
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Equation (2.3). The simulated data represent the number of “failures” (e.g., hospital visits) before
achieving N successes, with no zero counts.
Simulation setup for LSD: We simulate 5000 observations from an LSD with parameter 6 = 0.5,0.8.

4.1.2. Step-by-Step Calculations

1.

2.

6.

Data generation: Using a statistical software R package, we generate 5000 random variates from
the ZTNBD. This yields a data set {Z,, Z,, ..., Zso00}, Where each Z; > 1.

Empirical failure rate estimation: The failure rate at z, defined as h(z) = P(Z = 2)/P(Z > 2), is
empirically estimated. For each integer z, we compute:

bl IS(Z >r) =~ k:

Pz = 1) =
“=r+ D= So00 £15000°

where 7, is the number of observations equal to r + 1 and 7, is the number of observations equal
to z. Thus,
PZ=r+1)

il =
@ P(Z > 1)

. Conditional expectation:

(Theorem 2.1) A positive discrete random variable Z follows a ZTNBD iff:

N +1
EZ|Z>rn="4,"
w

h(r +1), for all integers r > 1.

(Theorem 3.1) A positive discrete random variable Z follows an LSD iff:

+1
ElZ|Z>r] = rTh(r +1), forall integers r > 0.

Empirical calculation of conditional expectation: For each z, we select the subset of observa-
tions where Z; > r, and compute their mean:

- 1
ElZ|Z>r=— ) Z,
(Z1Z>r=—»

>r Zi>r

where n., is the number of such observations.

. Conditional variance:

(Theorem 2.2) specifies that Z is ZTNBD iff: V[Z | Z > r] equals the theoretical formula in (2.5)
for all integers z > 1.

(Theorem 3.2) specifies that Z is LSD iff: V[Z | Z > r] equals the theoretical formula in (3.2) for
all integers z > 0.

Empirical calculation: For the subset Z; > r, we compute the sample variance

Vz1z>r= D (Zi—E1Z|Z> 1),

>r Zi>r

The following tables present the results that were obtained.
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Table 1. Monte Carlo simulation results for ZTNBD (Conditional Expectation)

N=2w=05 N=2w=08
r |EZIZ>r) |2+ 2 hr+1) |EZ1Z>7r) | 2+ 2lh(r+ 1)
1] 4.5780 4.4136 7.8368 7.5588
2 | 6.3852 6.0133 12.2843 11.9285
3[7.9135 7.7142 16.7671 16.5120
49.8273 9.5432 21.3497 21.1896

Table 2. Monte Carlo simulation results for ZTNBD (Conditional Expectation)

N=4w=05 N=4w=08
r|EZ1Z>n [ 2+ 2hr+ ) [ ECZ1Z>r) [ 22+ 2lhr+ 1)
1[6.2345 6.0123 9.5678 9.3456
2 [ 8.3456 8.1234 14.6789 14.4567
3| 10.4567 10.2345 19.7890 19.5678
4] 12.5678 12.3456 24.8901 24.6789

Table 3. Monte Carlo simulation results for ZTNBD (Conditional Variance)

N=2,w=05 N=2,w=038
r\VZ|Z>r)| A(h) VZ|Z>r)| A(h)
1 5.1234 5.0123 8.4567 8.3456
2 7.2345 7.1234 12.2843 12.1234
3 9.3456 9.2345 16.7671 16.5678
4 11.4567 11.3456 21.3497 21.1234

Table 4. Monte Carlo simulation results for ZTNBD (Conditional Variance)

N=4w=05 N=4w=038
r|VZziz>rn] Ah | VEZI1Z>r ]| AM
1] 62345 6.1234 |  9.5678 9.4567
2| 83456 82345 | 14.6789 | 14.5678
3| 104567 |10.3456 | 19.7890 | 19.6789
4] 125678 | 124567 | 24.8901 | 24.7890

Table 5. Monte Carlo simulation results for LSD (Conditional Expectation)

6=05 0=0.8
r|EZI1Z>n | E3hr+ 1) [ E@1Z>r) | 52htr+1)
1]25123 2.4987 4.8765 4.8321
2 |3.1245 3.1421 6.2341 6.1987
3 |3.9876 3.9654 7.5432 7.5123
4 | 4.8765 4.8921 8.9123 8.8765
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Table 6. Monte Carlo simulation results for LSD (Conditional Variance)

0=0.5 =08
P V@ZIZ>n | ERhr+ 1) | VEZI1Z> 1) | 2R+ 1)
1]5.1234 5.1123 12.3456 12.3123
2[7.2345 7.2214 15.6789 15.6234
319.3456 9.3321 18.9123 18.8765
4 11.4567 11.4421 22.1234 22.0987

The columns (2, 3) and (4, 5) in Tables 1-4 can be compared directly, which indicates that Z fol-
lows ZTNBD with parameter w = 0.5,0.8. For LSD, the same results was obtained when comparing
columns (2, 3) and (4, 5) in Tables 5 and 6. These results indicate that the simulated data conform to
the ZTNBD, supporting the practical applicability of our theorems in identifying the distribution from
sample statistics.

4.2. Practical implications

The illustrative example demonstrates that our characterization methodology is both theoretically
sound and practically feasible. In the healthcare scenario, a researcher analyzing hospital visit data
could collect frequency counts, estimate failure rates from the proportion of patients with r visits,
and compute conditional expectations and variances to test for ZTNBD using our theorems. A close
match between empirical and theoretical values would confirm the distribution and guide decisions
on resource allocation. Similarly, in the ecological context, an ecologist could apply our method to
species abundance data, using observed counts to estimate failure rates and verify an LSD, informing
conservation strategies for rare species.

Although the example uses simulated data for controlled validation, the same steps apply to real-
world datasets, such as hospital admission records (available from public health databases like the
Centers for Disease Control and Prevention (CDC)) or biodiversity surveys (e.g., Global Biodiversity
Information Facility). The ability to estimate failure rates and conditional statistics from sample data
makes our approach accessible and robust, applicable to any field where truncated or over-dispersed
count data arise, including marketing, inventory control, and reliability analysis.

5. Conclusion

Finally, this paper has established necessary and sufficient conditions for characterizing the ZTNBD
and LSD distributions using conditional expectation and variance functions. Our methodology lever-
ages quantities such as conditional expectations and failure rates, which are often more readily es-
timable from sample data compared to full distributional forms. As demonstrated in Section 4 with
Monte Carlo simulations, practitioners can use truncated means and variances from data sets to verify
whether the underlying distribution follows a ZTNBD or LSD. This is particularly valuable in fields
like epidemiology (e.g., modeling non-zero disease incidence) or market research (e.g., analyzing non-
zero purchase frequencies). The necessary and sufficient conditions provided in our theorems offer
a diagnostic tool for researchers and analysts. By comparing empirical conditional expectations and
variances with our derived forms (e.g. Equations (2.4) and (3.2)), one can confidently identify ZTNBD
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or LSD as the appropriate model, avoiding misspecification errors common with overdispersal or trun-
cated data. The practical utility of our approach extends across disciplines where ZTNBD and LSD are
prevalent, such as accident statistics, ecological studies, and inventory control (as noted in the Intro-
duction). For instance, in scenarios where zero counts are structurally absent, our framework provides
a reliable method to confirm the underlying distribution, enhancing the accuracy of subsequent statis-
tical analyses.
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