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Abstract: Geographically weighted Poisson regression (GWPR) model is a further refinishing of
Poisson regression for model the spatial count data and consider local association of variables. Never-
theless, the GWPR model faces several challenges that can impact its effectiveness and reliability. One
of these challenges is the bandwidth selection. An improper bandwidth value results to either fitting
the GWPR model to the noise or output values that are unexpectedly low. A small bandwidth may well
include too much local variability, while large bandwidth may average out important local changes.
Meta-heuristic algorithms can be defined as optimization methods that designs up approximate so-
lutions to problems, which involves searching through the solution space in the best way possible.
Employment of meta-heuristic algorithms in determining the bandwidth value in GWPR model is en-
tirely novel owing to the utilization of optimization methods in the selection of bandwidth value. In this
paper, beluga whale optimization algorithm as meta-heuristic algorithms are employed to find the best
value of the GWPR model bandwidth by considering the objective function for bandwidth selection
as minimizing prediction errors. Based on cancer rate estimation as a real data application, the com-
parison studies and evaluations demonstrated that the proposed method outperformed other methods
regarding pseudo-R2 and Deviance. According to the results, utilizing the meta-heuristic algorithms
for estimating the bandwidth value in GWPR model presents a promising approach that combines
advanced optimization techniques with spatial analysis.
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1. Introduction

Spatial data can be described as collected phenomena having either inherent or stated locational
referent. It involves both spatial data content and spatial data entities as well. The recorded observa-
tions that are spatially distributed are defined here as content data while the data that correspond to one
spatial entity but change through time are defined as change data. Spatial data objects are points, lines,
areas, or surfaces with which content data are related.

Geographically modeling is a technique that provides much insight in the spatial analysis when
relationships between variables differ from place to place [24, 32]. This method can be used to get
closer to understanding how different phenomena change within different geographic locations. Spatial
regression models are one of the biggest areas in geographically modeling. Spatial regression models
are most useful to researchers who are trying to either spatially condition a dependent or independent
variable, or are trying to model a spatial data set where there is excessive spatial autocorrelation which
violates the assumptions of a classical regression analysis [20, 33]. Spatial regression models are used
in several disciplines and areas for instance in economic, urban and regional planning, environmental
conservation and health among others [17, 22, 30, 31, 35]. In addition, the spatial lag model can be
employed [2, 23].

Geographically weighted regression (GWR) model is a type of spatial regression models which
is used when the response variable is following the normal distribution [11]. Count data are often
employed in social, economic, and epidemiological investigation [7, 8, 9, 10]. The values in this type
of data are positive integers. One distribution that is well suited for this kind of data is the Poisson
distribution for more details on this distribution. The count values from the response variable along
with zeroes and possibly explanatory variables are linked and estimated through the Poisson regression
model. For spatial count data, the geographically weighted Poisson regression (GWPR) model has
been used to fully capture spatial behavior of the count response variable and the related explanatory
variables.

However, there are numerous factors that could affect its efficiency and credibility, which are the
challenges that are characteristic for GWPR model. A major difficulty in computing GWPR model is
the determination of the bandwidth value before performing the computation. Over the last few years,
a large number of natural-inspired algorithms have been successfully presented and implemented as
the methods for random searching of the optimal solutions of a variety of optimization problems.

In this paper, we put forward the natural-inspired optimization algorithm to estimate the values of
the bandwidth in GWPR model. In our proposed approach, we will be in a position to select the best
values with higher accuracy of predictive value. In real data application, the efficacy of our proposed
approach is shown to be superior to other approaches.

2. The description of GWPR model

Count data are used frequently in many types of research fields from Epidemiology, social and eco-
nomic investigations. The following type of data is positive integers. Poisson distribution is a familiar
distribution that used in modeling such type of data. This permits the examination of Poisson regres-
sion (PR) model aimed at modeling the counts as the response variable and possibly the explanation
variable.
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Let yi be the response variable and follows a Poisson distribution with mean ωi, then the probability
density function is defined as

f (yi) =
e−ωiωi

yi

yi!
, yi = 0, 1, . . . ; i = 1, 2, . . . , n. (2.1)

In a PR model, ln(ωi) = xT
i β is expressed as a linear combination of explanatory variables xi =

(xi1, ..., xip)T and β is a (p+ 1)× 1 vector of unknown regression coefficients. According to this, the PR
model can be as:

yi = exp(xT
i β)

= exp(β0 + β1xi1 + β2xi2 + ... + βpxip)
(2.2)

The most common method of estimating the coefficients of PR model is to use the maximum like-
lihood (ML) method. Given the assumption that the observations are independent, the log-likelihood
function is defined as

ℓ(β) =
n∑

i=1

{
yixT

i β − exp(xT
i β) − ln yi!

}
. (2.3)

The ML estimator is then obtained after computing the first derivative of the Eq. (2.3) and setting it
equal to zero. The ML estimator of PR model coefficients, β̂PR is

β̂PR = (XT ẐX)−1XT Ẑv̂, (2.4)

where Ẑ = diag(ω̂i) and v̂ is a vector where ith element equals to v̂i = ln(ω̂i) + ((yi − ω̂i)/ω̂i).
In practice, the relationships between variables might vary geographically. Unlike global regression

(PR model), where the regression coefficients that arise in PR are fixed over space. GWPR model
enables local variations in the estimation of coefficients [6, 13]. In other words, the coefficients are
estimate locally at spatial references data points using GWPR model. The GWR model is defined as
[12, 24].

yi,spatial = exp(xT
i β(ri, qi))

= exp(β0(ri, qi) + β1(ri, qi)xi1 + β2(ri, qi)xi2 + ... + βp(ri, qi)xip)
(2.5)

where β j(ri, qi), j = 1, 2, ..., p is the coefficients which are varying conditionals on the location and
(ri, qi)is the two-dimensional coordinates of the ith point in the geographical location. Thus, the spatial
heterogeneity is handled by GWPR model in a way that permits by parameters to be location dependent,
thus enables estimation of localized effects.

Based on locally weighted likelihood method which is maximizing the geographically weighted
log-likelihood function, the estimated coefficient, β̂GWPR, at location i, can be obtained as

β̂GWPR = (XT W(ri, qi)X)−1XT W(ri, qi)y, (2.6)

where W(ri, qi)is an n × nspatial weight matrix. Spatial weights are quantitative measures associated
with observations to derive them based on the distance from the focal observation. They define how the
observations within a close working range impact the auto regression characteristics of the prediction
for the particular position. In GWPR model, these weights are obtained through a kernel function
which describes the relative position between the data points. Several kernel functions available for
weighting and were adopted for use in developing the GWPR model such as box-car, bi-square, tri-
cube, exponential, Gaussian among them [16, 21, 33, 37].
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3. Bandwidth selection

In general, the GWPR modeling involves estimating for each intersection a regression equation
supported by the observations in other intersections. Experience has shown that observations near
intersection iwill contribute more to the estimation of the parameters of i than would those far from
it. This impact reduces as the distance between the two places rises gradually. For estimating the
smoothed geographical variations in the parameters with a distance based weighting scheme, GWPR
model uses a spatial kernel method [14].

The bandwidth of the kernel, up to which the weight is assigned, could be pre-specified based on the
distance or post-specified based on a certain number of neighbours. In a similar manner, the modeling
outcomes of the GWPR model are significant in the selection of the bandwidth [34]. A relatively small
bandwidth that only contains a few observations can lead to instability in the fits while a conversely
large value for the bandwidth can lead to bias [15].

The bandwidth parameter determines the size of the neighborhood taken into consideration by each
observation in weighing. When the bandwidth is small it can incorporate local changes, while if it
is large, it could overcome these alterations. The adaptive bandwidth methods can themselves adapt
to the density of data, this of course means that the methods can provide a more refined model[18,
19]. This selection can be done using either fixed selection, where a constant value applied across all
observations, or adaptive selection, where varies values applied based on data density, allowing for
more flexibility in capturing local variations. Several kernel functions are summarized in Table 1. As
in Table 1, the kernel function assigns weights to observations based on their Euclidean distance, di j,
from the regression point being estimated. In addition, the bandwidth, σ, which is representing the
number of neighboring data, needs to be determined.

Table 1. Kernel functions in GWPR model

Kernel Mathematical form

Gaussian wi j = exp
(
−1

2

(di j

σ

)2)
Exponential wi j = exp

(
−
|di j |

σ

)
Bi-square wi j =


(
1 −
( di j

σ

)2)2
i f |di j| < σ,

0 otherwise.

Tri-cube wi j =


(
1 −
( di j

σ

)3)3
i f |di j| < σ,

0 otherwise.

Box-car wi j =

{
1 i f |di j| < σ,

0 otherwise.

The idea behind estimating the bandwidth value in GWPR model is to determine the optimal extent
of spatial influence that neighboring observations have on the regression estimates for a specific loca-
tion. Bandwidth selection is crucial because it directly affects the model’s ability to capture local varia-
tions in relationships between dependent and independent variables. Methods such as cross-validation
(CV), generalized cross-validation (GCV), and information criteria like Akaike information criterion
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(AIC) or corrected AIC (CAIC) can help identify the optimal bandwidth, σ[19, 23].
Meta-heuristic algorithm are the refined methods of optimization employed to find good solutions

to problems which are hard to solve conventionally [9]. These algorithms are widely used where the
solution space is large, non-linear, or not very well defined [28]. These algorithms are planned to come
out of local optimal and aimed for global optima than local search hence more accurate than local
searches. Further, the nature of these algorithms is that they can give good solutions at once especially
in the search spaces of high dimensions, which can be hardly solved by the traditional optimization
processes [1].

From this point, our proposed idea is to use meta-heuristic algorithms for estimating the bandwidth
value in GWPR model which can offer a promising alternative to traditional methods. Through the
application of these optimization techniques, our proposed idea is able to improve their probability of
identifying optimal bandwidths that leads to accurate model representation and presentation. When the
nature of spatial data analysis becomes more intricate, the implementation of complex optimization
solutions to support modeling may be essential. In this paper, beluga whale optimization (BWO)
algorithm [36], which is swarm-based metaheuristic algorithm inspired from the behaviors of beluga
whales, is employed to tune the optimal bandwidth value in the GWPR model.

BWO algorithm basically replicates the behaviors of beluga whales which include group swimming,
foraging as well as the whale falls by which a dead whale enriches other organisms in the seas. This
biological inspiration enables BWO to invoke and discover the required solution space well. The
algorithm operates through three key phases: Three are divisions that were identified namely E1 The
Exploration phase, E2 the Exploitation phase, and E3 the Whale fall phase. As the first phase, beluga
whales try to find food in relations to their surroundings, which is where the solution space is being
searched for the best solutions. During the second stage, the solutions that the algorithm found may
introduce certain potential problems which then are altered in order to present better solutions. While
the third phase provides emulation of what happens after the death of a whale when resources in the
ecosystem are reallocating; in this case, the solutions as per their performance. The following are the
parameter combinations for our suggested methodology.

1. The number of beluga whales BWO algorithm is 15 members and the number of iterations is
tmax= 500.

2. Every member’s position is representing the bandwidth value of the kernel, σin Table 1 and it
chosen at random. The members’ starting positions are produced from a uniform distribution in
the interval [5, n]where nrepresents the number of samples in the real data under the study.

3. The definition of the fitness function is considered as the deviance criterion and it is defined as

fitness = min D
(
y; ŷ
(
β̂GWPR

))
= 2

n∑
i=1

yi log

 yi

ŷ
(
β̂GWPR

) − yi + ŷ
(
β̂GWPR

) , (3.1)

4. The best bandwidth value is obtaining after updating the positions according to the three phases
of the BWO algorithm until tmax is reached.

In this respect, the pseudo code of the BWO algorithm for finding the bandwidth value of the kernel,
σ is given in the Algorithm 1.
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4. Evaluation criteria

To compare and evaluate our proposed method, BWO-GWPR, performance with other methods,
two criteria for model evaluation were used. The first criterion is the pseudo − R2and the second
criterion is the Deviance. They are defined as, respectively,

pseudo − R2 = 1 −
D
(
y, ŷ
(
β̂GWPR

))
D
(
y, ŷ
(
β̂0

)) (4.1)

Deviance = 2
n∑

i=1

yi log

 yi

ŷ
(
β̂GWPR

) − yi + ŷ
(
β̂GWPR

) (4.2)

where D
(
y, ŷ
(
β̂GWPR

))
is the deviance of the fitted GWPR model and D

(
y, ŷ
(
β̂0

))
is the deviance of

the Intercept-only model. The best value of the bandwidth would be the one with the highest value of
pseudo − R2and the lowest values of the Deviance.

5. Data description

A year frame data, 2022, were collected from the 18 Iraqi provinces. The datasets for
this study were obtained from Authority of Statistics and Geographic Information System, Iraq
(https://cosit.gov.iq/ar/). The data included nine types of information in each individual provinces:
cancer rate (average per (10000) persons), as count data, representing the response variable. Unem-
ployment rate (X1), Urbanization rate (X2), PM2.5 (X3),NO2 (X4), SO2 (X5), O3 (X6), CO (X7), and
CH4 (X8). Variables X1 to X8 represent the explanatory variables. In Figure 1, the cancer rate of 18
Iraqi provinces is reported. The geographical pattern of the cancer rate suggests differences between
northern part and the southern part of the provinces.

6. Results and Discussion

First, the Kolmogorov Smirnov test was used in this study to test the goodness of fit of the response
variable to the Poisson distribution. The result of the test is equal 7.486 with P-value equates 0.80128.
This is pointed out by this result as an indication that Poisson distribution is a perfect fit for this re-
sponse variable (cancer rate). Table 2 provides the coefficients of PR model (global model). According
to the PR model, Urbanization rate (X2), PM2.5 (X3), CO (X7), and CH4 (X8) had a significant effect
on cancer rate. Further, the association between cancer rate and Urbanization rate (X2), PM2.5 (X3),
and CH4 (X8) was positive. That is mean if the Urbanization rate (X2), PM2.5 (X3), and CH4 (X8)
increased, the probability of cancer rate increased. The association between cancer rate and CO (X7)
was negative; meaning that if the CO (X7) decreased, the probability of cancer rate increased. On
the other hand, Unemployment rate (X1), NO2 (X4), SO2 (X5), and O3 (X6) were not significantly
associated with the cancer rate.

Second, to determine local variations in the relationship between the dependent variable and predic-
tors for the 18 locations in the study area, the spatial heterogeneity test was conducted. The Breusch-
Pagan (BP) test was used to test whether the variance of residuals is homoscedastic or heteroscedastic
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Figure 1. The spatial distribution of the cancer rate of 18 Iraqi provinces under study.

Table 2. PR model estimation

parameter estimation Std. error t-value p-value
Intercept 2.4689 0.5641 4.376 0.0001
X1 -0.0011 0.0083 -0.127 0.8989
X2 0.0079 0.0021 3.847 0.0001
X3 0.0080 0.0037 2.163 0.0001
X4 -0.9336 4.0006 -0.233 0.8154
X5 4.4307 3.7468 1.183 0.2370
X6 5.2732 3.8420 1.373 0.1699
X7 -0.9329 0.4526 -2.061 0.0001
X8 0.6388 0.2813 2.270 0.0002
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across locations. The null hypothesis is that variances are the same in different locations while the
alterative hypothesis is that there is one or more different variances in different locations. If the null
hypothesis is rejected then spatial heterogeneity is said to exist significantly. As a result, the test statis-
tic value of the BP test is 16.059 and the p-value is 0.00251 which is less than 0.05. This means
that there is spatial diversity among the 18 locations in our study area. In order to model this spatial
heterogeneity, the GWPR model (local models) is considered to exploring the different spatial rela-
tionships between cancer rate and the 8 explanatory variables. Further, the multicollinearity among the
explanatory variables [3, 15] and the outliers [4] were checked.

Depending on the bi-square kernel weighting function, the GWPR model parameter estimates using
CV, GCV, AIC, and our proposed method, BWO-GWPR, for fixed bandwidth selection are summarized
in Tables 3, 4, 5, 6. The GWPR model parameters are described by the five indicators statistics: the
minimum (Min), first quartile (Q1), median (Med), third quartile (Q3), and maximum values (Max).
Further, Table 7 displays the results for the evaluation criteria and the bandwidth optimum value.

Two general observations are worthy of notice form Tables 3, 4, 5, 6 E1 With respect to the five
statistics indicators (Min, Q1, Med, Q3, and Max), the direction (either positive or negative relation-
ship) of relationships of relationships between cancer rate and each explanatory variable of BWO-
GWPR is consistent in the corresponding counterparts in AIC, CV, and GCV methods. For example,
the parameters of PM2.5 (X3) in AIC, CV, and GCV are all positive. The varying parameters of each
significant variables in AIC, CV, and GCV always fall into the range of corresponding counterparts in
BWO-GWPR.

Table 3. Summary of GWPR parameters for AIC method

parameter Min Q1 Med Q3 Max
Intercept 1.9957 2.3020 2.4390 3.3099 3.5212
X1 -0.0001 0.0035 0.0052 0.0101 0.0105
X2 0.0067 0.0069 0.0080 0.0087 0.0089
X3 0.0061 0.0086 0.0157 0.0179 0.0181
X4 -4.4812 -4.0111 -2.4221 -2.0230 -0.8564
X5 -1.4767 -1.1745 1.0510570 5.6959049 7.1754
X6 5.3699 5.9835 8.9095 10.2804 10.5664
X7 -1.2604 -1.1007 -0.9852 -0.9464 -0.7524
X8 -0.2115 -0.0846 0.4801 0.6683 0.8184

Regarding GWPR model performance, the results in Table 7 show that both deviance and pseudo-
R2 obtained by our proposed method, BWO-GWPR, is more accurate indicated that BWO-GWPR had
the highest pseudo-R2 and least Deviance compared with AIC, CV, and GCV methods. The Deviance
in the BWO-GWPR is reduced by 50.55%, 29.18%, and 18.23% respectively as compared to the AIC,
CV, and GCV. The results indicate that the GWPR model using our proposed method, BWO-GWPR
produces more accurate predictions for cancer rate in individual Iraqi provinces than those the AIC,
CV, and GCV by capturing the spatial heterogeneity in the data.

In Figure 2, after selecting the bandwidth with BWO-GWPR, the spatial distribution of the predicted
cancer rate in the GWPR model is given. In Figure 1, it is seen that the distribution of the predicted
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Table 4. Summary of GWPR parameters for CV method

parameter Min Q1 Med Q3 Max
Intercept 1.5176 2.2307 2.6719 3.3554 3.5354
X1 0.0017 0.0074 0.0087 0.0101 0.0105
X2 0.0064 0.0069 0.0074 0.0088 0.0092
X3 0.0042 0.0079 0.0171 0.0179 0.0183
X4 -4.6813 -4.0229 -3.6008 -2.8366 -0.2338
X5 -1.8386 -1.2337 0.4256 8.2163 10.0032
X6 5.5287 7.3340 10.0703 10.2899 10.6670
X7 -1.2929 -1.1032 -1.0252 -0.9752 -0.6934
X8 -0.2192 0.1111 0.2694 0.6708 1.0107

Table 5. Summary of GWPR parameters for GCV method

parameter Min Q1 Med Q3 Max
Intercept 1.4861 2.2081 2.9839 3.5412 3.8595
X1 0.0026 0.0074 0.0087 0.0099 0.0126
X2 0.0056 0.0065 0.0071 0.0088 0.0093
X3 0.0040 0.0084 0.0174 0.0179 0.0194
X4 -6.8642 -4.5407 -3.8301 -2.6757 -0.1301
X5 -2.7364 -2.5067 -0.4729 8.2856 10.3894
X6 5.1972 7.6457 9.5011 10.2436 10.7793
X7 -1.3083 -1.0795 -0.9803 -0.9447 -0.8651
X8 -0.3666 -0.2138 0.1067 0.6904 1.0251

Table 6. Summary of GWPR parameters for BWO-GWPR method

parameter Min Q1 Med Q3 Max
Intercept 1.3969 2.1933 3.0464 3.5401 4.7482
X1 0.0003 0.0070 0.0103 0.0128 0.0208
X2 0.0038 0.0053 0.0063 0.0089 0.0095
X3 0.0036 0.0093 0.0162 0.0201 0.0246
X4 -7.1083 -5.3736 -4.0113 -2.4878 0.1532
X5 -4.50450 -3.6697 -0.6533 8.2745 11.0510
X6 4.77974 6.4176 10.4754 11.2651 15.6831
X7 -1.34579 -1.1795 -1.0036 -0.9234 -0.7264
X8 -0.71630 -0.2512 -0.0127 0.7055 1.0665
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Table 7. Summary of evaluation criteria and the best bandwidth for used methods

Methods pseudo-R2 Deviance best bandwidth
AIC 0.8991 6.0325 18
CV 0.9289 4.2494 17
GCV 0.9390 3.6479 16
BWO-
GWPR

0.9501 2.9826 15

cancer rate is quite compatible with the distribution of the real cancer rate shown in Figure 1.

The distributions of the parameters of the significant explanatory variables, Urbanization rate (X2),
PM2.5 (X3), CO (X7), and CH4 (X8) over the 18 provinces of are shown in Figures 3, 4, 5, 6. The
parameters show clear patterns of spatial variation. The maps indicate that the four parameter estimates
using AIC, CV, GCV, and BWO-GWPR are not equal for all locations.
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Figure 2. The cancer rate prediction (a) AIC, (b) CV, (c) GCV, and (d) BWO-GWPR
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Figure 3. The significant Urbanization rate (X2) parameter estimates (a) AIC, (b) CV, (c)
GCV, and (d) BWO-GWPR
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Figure 4. The significant PM2.5 (X3) parameter estimates (a) AIC, (b) CV, (c) GCV, and (d)
BWO-GWPR
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Figure 5. The significant CO (X7) parameter estimates (a) AIC, (b) CV, (c) GCV, and (d)
BWO-GWPR

For further evaluation of our proposed method, a simulation study was conducted. Each model
is fitted to the count data generated from the following model: yi ∼ Poisson

(
µi, σ

2
)
, µi =

exp
(
βi,0 + xi,1βi,1 + xi,2βi,2

)
, xi,k ∼ N (0, 1) . Where the coefficients are generated from the follow-

ing spatial moving average proc-esses βi,k = µk(β) +σk(β)

[∑N
i=1 gi, j(b)u j,k∑N

i=1 gi, j(b)

]
,where u j,k ∼ N (0, 1) and [·]is

an operator standardizing. with mean zero and variance one3. The spatial weight gi, j (r)is given by the
(i, j)− th element of the spatial proximity matrix, whose ( j, j)− th element equals exp

(
−d2

i, j

/
r2
)
, where

r is a range parameter that determines the spatial scale of the local coefficient. Spatial coordinates
for evaluating distance were generated from two uniform distributions (minimum: -2; maximum: 2).
Regarding simulation study, the results in Table 8 show that both deviance and pseudo-R2 obtained
by our proposed method, BWO-GWPR, is more accurate indicated that BWO-GWPR had the highest
pseudo-R2 and least Deviance compared with AIC, CV, and GCV methods.

7. Conclusion

The GWPR model is a particular type of statistical technique applied to the analysis of count data
that changes across space while taking into account while taking into account the spatial specificity of
the relations between the variables. In addition, if the bandwidth is chosen poorly, the model fitting
to the data set can be either overly complex and memorize the noise or insufficiently complex and fail
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Figure 6. The significant CH4 (X8) parameter estimates (a) AIC, (b) CV, (c) GCV, and (d)
BWO-GWPR

Table 8. Simulation study results

Methods pseudo-R2 Deviance best bandwidth
AIC 0.8875 4.1592 22
CV 0.8981 3.8874 20
GCV 0.9055 3.6552 18
BWO-
GWPR

0.9217 2.8083 13
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to capture important patterns of the data set. This study presents an employing of meta-heuristic al-
gorithms, which is beluga whale optimization algorithm for estimating the bandwidth value in GWPR
model which can offer a promising alternative to traditional methods. Based on cancer rate estima-
tion as a real data application, the comparison studies and evaluations demonstrated that the proposed
method, BWO-GWPR, outperformed AIC, CV, and GCV methods regarding pseudo-R2 and Deviance.
Additionally, the varying parameters of each significant variables in AIC, CV, and GCV always fall into
the range of corresponding counterparts in BWO-GWPR. However, as limitations, GWPR is prone to
multicollinearity issues at local levels. In addition, GWPR has instability with zero counts. For the
future work, the spatial lag model can be employed.

Data Availability: The data that support the findings of this study are available upon request from the
corresponding author.
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manuscript and approved its submission.
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