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Abstract: In this article, we introduce a new two-parameter distribution called the type II half-logistic
Ailamujia distribution, which is constructed from the type II half-logistic-G family and Ailamujia dis-
tribution. The probability density function exhibits decreasing, unimodal, and right-skewed shapes,
whereas the hazard rate function shows decreasing, J-shaped, increasing, and inverted trends. Several
statistical characteristics for the type II half-logistic Ailamujia distribution were computed, such as mo-
ments, moment-generating function, probability weighted moment, incomplete moments, conditional
moments, mean deviation, Lorenz and Bonferroni curves, mean residual life, mean inactivity time
and order statistics. Several uncertainty measures were computed and discussed theoretically and nu-
merically. In addition, the maximum likelihood estimation method is used for the type II half-logistic
Ailamujia distribution to estimate its two parameters. A thorough numerical analysis was carried out to
evaluate the maximum likelihood strategy of the estimation’s efficacy. The practicality and significance
of a recently created model can be established by examining two real datasets. The type II half-logistic
Ailamujia distribution is compared with numerous well-known statistical distributions such as Aila-
mujia, exponentiated Ailamujia, exponentiated exponential, gamma, and generalized Lindley models
by utilizing different metrics. The numerical findings revealed that the type II half-logistic Ailamujia
model suited the data better than the other competing models.
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1. Introduction

This novel distribution provides additional flexibility in simulating failure rates, making it suitable
for a wide range of practical applications. Extending current distributions allows researchers to create
more precise models that closely match the available data. New probability distributions were de-
veloped and tested to advance statistical theory and methodology, ultimately improving our ability to
make data-driven judgments. Applying these innovative distributions to real-world datasets illustrates
their worth and importance in various industries, including reliability engineering, banking, and insur-
ance. In essence, continuous innovation in probability theory propels the development of statistical
modeling and analysis. [1] established the Ailamujia distribution (AD) for evaluating real-life data.
This distribution is useful for anticipating maintenance time because it is flexible and includes distri-
bution delays. Let W be a random variable that indicates the product’s lifetime according to AD. AD
can be identified by its cumulative distribution function (CDF) [takes ¢ = 20]

Gw,y)=1-(0+yw)e™, w>0,y>0. (1.1)
The appropriate probability density function (pdf) is presented as follows:
gw;y) = Pwe ™, w> 0,4 > 0. (1.2)

Several authors have made great contributions to the study of AD. Pan et al. [2] examined interval

estimation and hypothesis testing using a small sample size. [3] utilized conjugate prior, Jeffrey’s prior,
and non-informative prior distributions to estimate Bayesian models with type II censoring. Yu et al.
[4] employed AD to examine the incidence and distribution of combat injuries during a campaign.
Jan et al. [5] introduced and investigated a weighted version of AD, which outperformed the standard
model. Jamal et al. [6] recently presented the power Ailamujia (PA) distribution, which is an extension
of AD with a power transformer and a reparameterization. The idea is straightforward: adding a shape
parameter increases the flexibility of the distribution. In recent years, many authors have extended
AD, such as: exponentiated AD by [7], alpha power AD by [8], Marshall-Olkin power AD by [9],
power-Lindley AD by [10] and weighted inverse AD by [11].
There has been a recent surge in interest in the development of new generators for univariate con-
tinuous distributions by introducing one or more additional shape parameter(s) into the base model.
The inclusion of these parameter(s) has proven to be effective in examining the tail characteristics
and enhancing the goodness-of-fit of the proposed generator group. These distributions were formu-
lated by incorporating additional parameters into a baseline distribution to establish a novel set of
skewed distributions that offer greater analytical versatility. Consequently, numerous categories have
emerged in the statistical literature. Among the prominent generators are logistic-X-G proposed by
[12], gamma-G developed by [13], sine-G studied by [14], Kumaraswamy-G introduced by [15], new
heavy-tailed-G discussed by [16], McDonald-G presented by [17], odd inverse Weibull-G family by
[18], odd hyperbolic cosine-G introduced by [19], Zografos-Balakrishnan-G proposed by [20], arcsine
exponentiated-X G suggested by [21], truncated Muth-G proposed by [22], and odd inverse power gen-
eralized Weibull-G proposed by [23]. Hassan et al. [24] discussed the type II half-logistic-G (TIHHL-G)
family. Define G(w; ¢) as the CDF and g(w; <) as the pdf of the baseline distribution, then the CDF and
pdf for the TIIHL-G family respectively, are given by:

2G°(w;s)

Fw;¢) = ——————

weR (1.3)
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and
_ 268(w: )G (wi6).

[1+Géw; )]

gw;¢) w e R, (1.4)

where ¢ is a positive shape parameter.

The primary aim of this paper is to introduce and analyze the statistical properties of a novel two-
parameter model referred to as the type II half-logistic Ailamujia (TIIHLA) distribution. The investi-
gation of this model was motivated by the following considerations:

1. The TITHLA distribution displays an extensive variety of graphical representations for the pdf and
the hazard rate function (hrf).

2. Various statistical properties of the TIIHLA distribution are explored, including moments,
moment-generating function, probability weighted moment, incomplete moments, conditional
moments, mean deviation, Lorenz and Bonferroni curves, mean residual life, mean inactivity
time, and order statistics.

3. The maximum likelihood (ML) estimation technique is utilized to estimate the two parameters
of the TIIHLA distribution. A comprehensive numerical procedure was performed to determine
whether the ML estimation technique was effective.

4. To outperform competing models, we compared TIIHLA distribution against several alternative
models such as Ailamujia, exponentiated Ailamujia, exponentiated exponential, gamma, and gen-
eralized Lindley models using two real-world datasets. The TIIHLA distribution consistently
demonstrated superior performance.

The remainder of this paper is organized as follows: Section 2 establishes the framework for the
TITHLA distribution. Section 3 delineates significant mixture representations of its pdf and CDF.
Section 4 analyzes various statistical properties associated with the distribution. Sections 5 and 6
explore differing measurements of entropy and the order statistics, respectively. Sections 7 and 8 focus
on parameters estimation and the results of simulation studies. Finally, Section 9 presents insights
derived from real data, while Section 10 offers concluding remarks.

2. Model Formulation

This section explores the main distribution functions of the TIIHLA model utilizing both mathematical
and visual methods. As stated in the introduction, the CDF of the TITHLA distribution is produced by
combining Equations (1.1) and (1.3), which can be expressed as follows:

2[1 -1 +yw) e

Fw,y,0) =
(w3 ¢9) 1+ [1-(1+yw) e

L w>0, ¥,6>0. (2.1)

The relevant pdf is derived by substituting Equation (1.2) into Equation (1.4):

2602 we™ [1 = (1 +yw) e

fwiy,0) = 2
[+ (1= +yw) ewy]

(2.2)

The survival or reliability function (SF) determines the probability of an item surviving during a given
time range. In engineering, the phrase “reliability” is usually used, while the term “survival” relates to
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human mortality. The TIIHLA distribution’s SF is described as:

1-[1=(1+yw) e™]

Swiy,0) = .
0:4-9) 1+ [1=(1+ygw) ew]

(2.3)

The hrf is an essential idea in survival analysis, and is commonly used in medical research to determine
the time until an event of interest occurs. This serves to evaluate the probability of an event occurring
at specific times, assuming that it has not yet occurred. For the proposed model, the hrf is given by:

2692 we™ (1 - (1 +yw)e?)

h(w;y, ) =
(34:.9) 1-[1-(1+ywye]?

(2.4)

Figures 1-3 depict the pdf and hrf of the proposed model. As shown in Figures 1-3, the pdf exhibits
a decreasing, unimodal and right-skewed form, whereas the hrf demonstrates decreasing, J-shaped,
increasing and inverted trends. This variability underscores the model’s adaptability in representing a
wide range of distributional characteristics and hazard-rate profiles.
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Figure 1. Plots of the pdf and hrf across a range of parameter values.

3. Mixture Representation

This section presents series representations for the pdf and CDF derived from the generalized binomial
expansion. We begin by recalling that for any real number a > 0 and |¢| < 1, the generalized binomial
series is defined as follows:

(1+8) = > (-1)" ("Z”_l ) &, 3.1)
n=0

by employing this extension, Equation (2.2) can be reformulated as:

Fowig,0)= > 2(=1* (i + 1) Sy w(l+yw) eV, (32)

i,j=0

((i+1)6—1)
J
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Figure 2. 3D Plots of the pdf and hrf at ¢ = 0.5.

Figure 3. 3D Plots of the pdf and hrf across at ¢ = 1.2.

Furthermore, using the normal power series expansion.

(1+b) = Z( Z )bh; for |p| < 1 and z is a positive real non-integer 3.3)
h=0

the pdf of the TIIHLA distribution can be expressed as:

fowsg,0) = > mjpwltt eV (3.4)

i.j k=0

where the coeflicient 7; j; is defined as:
] R (AL

We now derive an analytical expression for [F(w;, )], where m is an integer, using Equation (3.1),
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yields:
o(m+v)

[F(w; 4, 6)]" = sz(—l)V( e ! ) [1-+yw e
v=0

Next, the term [1 — (1 + Yy w) eV W]é(mw) is rewritten using the generalized binomial expansion as:
[1-+yw) e " = i(—nb Om+W) ) (1 4 gy ebow
b=0 b

Subsequently, by employing Formula (3.3) for the expansion of (1 + ¥ w)?, the expression of
[F(w; ¥, 6)]"can be reformulated as:

[Fovs g, 1" = D mupaw' e, (3.5)
v,b,1=0

with the coefficient 1, ;, is defined by:

Camy qytb [ MV o(m+v) b !
Mps = 2" (=1) ( y )( b )(l)l/’-

Series representations (3.4) and (3.5) facilitate the determination of the statistical properties for the
proposed model.

4. Statistical Properties

This section thoroughly explores the key statistical properties of the TIIHLA distribution. In particu-
lar, we derive and discuss its moments, moment-generating function, probability-weighted moment, in-
complete moments, and conditional moments. Additionally, we look at the mean deviation, Lorenz and
Bonferroni curves, mean residual life, and mean inactivity time. These properties provide a detailed
insight into the distribution’s behavior and its potential applications in various analytical contexts.

4.1. Moments

Statistical moments are numerical metrics that are used to describe the shape and dispersion of a distri-
bution. They contribute to the summary of the data distribution and provide insights into its properties.
The first four statistical moments are; the first moment [mean: u = ,u’l] is the average of all data values
and represents the distribution’s center. The second moment [variance: o2 = y, — (u;)*] indicates the
spread of the data around the mean. The third moment [skewness: y; = [/13 -3 ,L/l ,u'2 +2 (/.1,1)3] /a'gv]
denotes asymmetry in the distribution; negative skew suggests a longer left tail, while positive skew in-
dicates a longer right tail. The fourth moment [kurtosis: y, = [,u;1 —Ap py + 6 () po — 3, )4] /O'jv]
determines whether a distribution is highly peaked or spread out; a high kurtosis suggests a sharp peak,
while a low kurtosis indicates a more spread out distribution. Moreover, the coefficient of variation
[CV = o,/u ] assesses the spread of data points in comparison with the mean. In general, ordinary
moments are significant in statistical analysis because they provide crucial insight into data distribu-
tion, resulting in more accurate results. The " moment about the origin of the TIITHLA distribution is
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calculated by utilizing the pdf (3.4) as follows:

ion = B0 = [ fwi)
0
'ulr(w) = Z T ik f Wkl o= G+ w 4.,
i,jk=0 0

- T(r+k+2
R L T AL A @.1)
i k=0 [+ Dy]

3.0 3.0

Figure 4. 3D Plots of the mean, variance, skewness and kurtosis for the TIIHLA model.

Table 1 illustrates the numerical results for the first four moments, variance, skewness, kurtosis, and
CV for the proposed model at different levels of parameters ¢ and 6. As the values of these parameters
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increase, consequently increase the first four moments and variance, whereas the skewness, kurtosis,
and CV decrease. Figure 4 displays visual confirmation of these findings.

Table 1. A numerical representation of the first four moments, crfv , Y1, Y2 and the CV

1|07 M T M2 T uz T e T o, T Yl Y2l cv |
05 |05 | 1.87775 | 8.14712 | 55.9948 519.696 4.62116 | 2.34967 10.9659 | 1.144820
1.0 | 3.04665 15.2737 109.738 1032.62 5.99158 1.82026 8.00707 | 0.803430
1.5 | 3.85630 | 21.4303 160.557 1535.06 6.55925 1.62669 7.13877 | 0.664135
2.0 | 447062 | 26.8315 | 208.520 2025.60 6.84510 | 1.52789 6.74362 | 0.585225
3.0 | 5.37536 | 35.9971 | 296.922 2970.48 7.10262 | 1.42992 6.38790 | 0.495795
5.0 | 6.55489 | 50.2079 | 450.459 4728.10 7.24129 1.35587 6.14920 | 0.410528
1 0.5 | 093888 | 2.03678 | 6.99935 | 32.48100 | 1.15529 | 2.34967 10.9659 1.14482
1.0 | 1.52333 | 3.81842 | 13.71720 | 64.53890 | 1.49790 | 1.82026 8.00707 0.80343
1.5 | 1.92815 | 5.35757 | 20.06960 | 9594130 | 1.63981 1.62669 7.13877 0.66414
2.0 | 2.23531 | 6.70788 | 26.06500 | 126.6000 | 1.71128 1.52789 6.74362 0.58523
3.0 | 2.68768 | 8.99927 | 37.11530 | 185.65500 | 1.77566 | 1.42992 6.38790 0.49580
5.0 | 3.27745 12.552 56.3074 | 295.50700 | 1.81032 1.35587 6.1492 0.410528
2 0.5 | 0.46944 | 0.50920 | 0.87492 | 2.030060 | 0.28882 | 2.34967 10.9659 1.14482
1.0 | 0.76166 | 0.95460 1.71466 | 4.033680 | 0.37447 1.82026 8.00707 0.80343
1.5 | 0.96408 1.33939 | 2.50870 | 5.996330 | 0.40995 1.62669 7.13877 0.66414
2.0 | 1.11765 1.67697 | 3.25812 | 7.912510 | 0.42782 1.52789 6.74362 0.58523
3.0 | 1.34384 | 2.24982 | 4.63941 11.60340 | 0.44391 1.42992 6.38790 0.49580
50| 1.63872 | 3.13799 | 7.03843 18.46920 | 0.45258 1.35587 6.14920 0.41053
2.5 | 0.5 | 0.375551 | 0.325885 | 0.447959 | 0.831513 | 0.184846 | 2.34967 10.9659 1.144820
1.0 | 0.609330 | 0.610947 | 0.877904 | 1.652200 | 0.239663 | 1.82026 8.00707 | 0.803430
1.5 | 0.771260 | 0.857212 | 1.284460 | 2.456100 | 0.262370 | 1.62669 7.13877 | 0.664135
2.0 | 0.894123 | 1.073260 | 1.668160 | 3.240960 | 0.273804 | 1.52789 6.74362 | 0.585225
3.0 | 1.075070 | 1.439880 | 2.375380 | 4.752770 | 0.284105 | 1.42992 6.38790 | 0.495795
5.0 | 1.310980 | 2.008320 | 3.603680 | 7.564970 | 0.289651 | 1.35587 6.14920 | 0.410528
3 0.5 | 0.312959 | 0.226309 | 0.259235 | 0.401000 | 0.128366 | 2.349670 | 10.965900 | 1.144820
1.0 | 0.507775 | 0.424268 | 0.508046 | 0.796777 | 0.166433 | 1.820260 | 8.007070 | 0.803430
1.5 | 0.642716 | 0.595286 | 0.743320 | 1.184460 | 0.182201 | 1.626690 | 7.138770 | 0.664135
2.0 | 0.745103 | 0.745320 | 0.965370 | 1.562970 | 0.190142 | 1.527890 | 6.743620 | 0.585225
3.0 | 0.895893 | 0.999919 | 1.374640 | 2.292040 | 0.197295 | 1.429920 | 6.387900 | 0.495795
5.0 | 1.092480 | 1.394660 | 2.085460 | 3.648230 | 0.201147 | 1.355870 | 6.149200 | 0.410528
3.5 1 0.5 0.268250 | 0.166268 | 0.163250 | 0.216450 | 0.094309 | 2.349670 | 10.965900 | 1.144820
1.0 | 0.435236 | 0.311707 | 0.319936 | 0.430080 | 0.122277 | 1.820260 | 8.007070 | 0.803430
1.5 | 0.550900 | 0.437353 | 0.468096 | 0.639342 | 0.133862 | 1.626690 | 7.138770 | 0.664135
2.0 | 0.638659 | 0.547582 | 0.607930 | 0.843650 | 0.139696 | 1.527890 | 6.743620 | 0.585225
3.0 | 0.767908 | 0.734634 | 0.865663 | 1.237180 | 0.144951 | 1.429920 | 6.387900 | 0.495795
5.0 | 0.936413 | 1.024650 | 1.313290 | 1.969220 | 0.147781 | 1.355870 | 6.149200 | 0.410528
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4.2. Moment-generating function

The moment-generating function (MGF) is a fundamental tool in probability theory. It enables the
efficient calculation of a random variable’s moments and simplifies the analysis of sums of random
variables through the convolution property. Furthermore, the uniqueness property of the MGF ensures
that if two random variables possess identical MGFs (within a neighborhood of the origin where the
MGEF converges), their probability distributions are necessarily equivalent. The MGF of the TIIHLA
distribution is derived using the pdf (3.4) as follows:

miw) = f " s, 6) dw
0

= Z ﬂi,j,kf whth el GHDIw g,
0

i,jk=0

- Tk +2) ,
= E i 5 1 s 4.2
2 Gy T U -

4.3. Probability weighted moment

The probability weighted moment (PWM) approach is commonly used for estimating parameters in
distributions that lack a straightforward inverse form. First introduced in [25], this method has gained
significant recognition in hydrological studies for estimating purposes. The PWM of the TIIHLA
distribution is obtained as:

pow) = E[WF"(w;y,6)] = f(; w [Fw; g, )" fw; i, 6) dw 4.3)

By substituting Equations (3.4) and (3.5) into Equation (4.3), we obtain:

[ee)

o(w) = Z Z ik b f WKL U b+ w g
0

ijk=0 v,b,1=0

o0
i.jk=0

(o)

I'(r+k+1+2)
(]+b + l)lﬁ]r+k+l+2 '

T jk Tv.b.1
v,b,1=0 [

4.4. Incomplete moments

Incomplete moments (IMs) provide a framework for characterizing a distribution by concentrating on
a specific sub-range of values rather than its entire domain. This targeted approach, which focuses
on values that exceed or fall below a designated threshold, is particularly effective for analyzing tail
behavior and emphasizing critical portions of the distribution. In the field of economics, IMs are
indispensable for quantifying inequality. For example, income quintiles facilitate the assessment of
disparities among different segments of the population. Furthermore, the Lorenz curve (L.z), which
is derived from IMs, offers a visual representation of the distribution of income or wealth, while the
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Bonferroni index (Bo) furnishes an additional quantitative measure of inequality. The s IMs of the
TITHLA distribution can be expressed as follows:

kw)y=EW'|W<t)= f w' f(w; ¢, 0) dw
0

Z ik f WL o= G w g

i,7,k=0
_ Z y[s+k+2, (]kjﬁlz)wt] @.4)
i,j,k=0 (]+1)¢]

where, y(1,¢) = f(f y*! e dy indicates the lower incomplete gamma function. Substituting s = 1

into Equation (4.4), yields the first IM of the TIIHLA distribution as:

[ee)

ylk+3, G+ Dyl
= > 7, mity 4.5)
1 Zk:o H G+ Dyl

To evaluate the Lz and the Bo, we employ the following equations: Lz = k;(w)/u and Bo = k;(w)/p X u,
where g = F~!(p) denotes the quantile corresponding to the probability p. Furthermore, Equation (4.5)
is employed to derive the mean deviation about i or median (M), which are expressed as follows:

W) =E[|W—pll =20 Fu) — 2 (1) ,

or
W) =E[|W-M;|l=pu-2K(My) ,

where, F(u) is obtained from Equation (2.1).

4.5. Conditional moments

Conditional moments (CMs) are crucial in many statistical techniques, such as regression and hypoth-
esis testing, for showing the relationship between variables and their responses in various contexts.
For instance, in regression analysis, these moments can predict the value of the dependent variable
using particular independent variable values, offering valuable insights into variable behavior across
different conditions and enhancing forecasting accuracy. The CMs of the TIIHLA distribution can be

represented as:
15(1)

E(W‘Y|W>l)=m’

the term 7,(¢) can be derived as follows:

ns(t) = f w' fw; 4, 0) dw

00 00

Z ﬂ‘f"f sth+l o=g (FD W 7.,
k=0

(o)

Z I[s+k+2, (j+ Dyt
= [+ Dyl

such that, I'(1,¢) = fg “y! e dy denotes the upper incomplete gamma function.

l

(4.6)
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4.6. Mean residual life and mean inactivity time

In survival analysis and reliability theory, the mean residual life (MRL) is employed to predict the
remaining lifetime of an individual or system that has survived up to a specific time point. This function
is widely utilized in healthcare, actuarial science, and the social sciences to analyze and forecast future
survival and mortality outcomes. The MRL for the TIIHLA distribution is determined as:

ni(1)

MRL() = EQOW —1] W > 1) = g5 -

b

utilizing Equation (4.5) for computing the first CM:

(o)

Tlk+3,(1+ )yt
m() = i j, "
1 ;o G+ el

using Equation (2.1), the MRL is described as:

(o0

1+[1-(1+yr) e Z Tlk+3,G+ il
J.

MRL(t) = — 1 + i) -
T .= S [ R )

, 4.7)

The mean inactivity time (MIT), also called mean past lifetime or mean waiting time, is a key relia-
bility metric in survival analysis, risk theory and actuarial studies. It provides insight into the average
duration of inactivity for a system or component. The MIT for the TITHLA distribution is derived as:

k@
F(t;4,6)

by applying Equation (4.5) in conjunction with Equation (2.1), we obtain:

MITO)=EW|W<p=t >0,

MIT(t) =t

AT ;
L[l =(+yn e T ylk+3.G+Dyt] 4.8)

2 - el L TG D™
Table 2 presents the MRL and MIT of the THHHLA distribution for various parameter levels. The results
indicate that as the parameter values increase, the MRL increases, while the MIT decreases.

Figure 5 shows how MRL and MIT change in response to variations in distribution parameters. The
left panel shows a significant decline in MRL as parameter values increase, while the right panel shows
a considerable increase in MIT under the same conditions.

5. Entropy Measures

In [26], entropy was first introduced in physics as a measure of the energy within a system that cannot
be used to perform work. Early studies in statistical mechanics and gas dynamics later connected this
idea to the behavior of atoms. Over time, entropy has become fundamental in multi-particle physics,
particularly in the analysis of non-equilibrium processes as guided by the second law of thermodynam-
ics and the principle of maximum entropy generation. In addition, [27] incorporated Shannon entropy
into his theories of information and communication, a concept that continues to be vital in modern
artificial intelligence and collaborative methodologies.
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Mean Residual Life

Figure S. Plots of the MRL (left) and MIT (right) for the TIIHLA distribution.
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Table 2. The MRL and MIT of the TIIHLA distribution

K 61 |MRLT |MIT] |¢1 61 | MRL1T | MIT |
05 | 1.18019 | 1.39452 0.5 | 0.46194 | 1.64620
1.0 | 1.19337 | 1.04743 1.0 | 046197 | 1.42970
. 1.5 [ 1.21493 |0.83386 |, 1.5 | 046203 | 1.28272
2.0 | 1.24425 [0.69001 | = 2.0 |0.46210 | 1.17333
3.0 | 1.32300 | 0.51038 3.0 | 046232 | 1.01634
50 | 1.53505 | 0.33564 50 |0.46302 | 0.82103
0.5 |0.78981 | 1.50115 05 | 037931 | 1.69612
1.0 | 0.79143 | 1.20525 1.0 | 0.37931 | 1.50875
s .5 079410 | 1.01277 | , 1.5 | 0.37932 | 1.38038
2.0 |0.79783 | 0.87539 2.0 | 0.37933 | 1.28401
3.0 | 0.80836 | 0.68951 3.0 | 037936 | 1.14410
50 | 0.84083 | 0.48256 50 |0.37946 | 0.96637
0.5 |0.58605 | 1.58263 0.5 |0.32085 | 1.73551
1.0 | 0.58628 | 1.33031 1.0 | 0.32085 | 1.57169
5 .5 058665 | 1.I6165 | , 1.5 | 0.32085 | 1.45887
20 | 058717 | 1.03796 | 2.0 |0.32085 | 1.37375
3.0 | 0.58866 | 0.86401 3.0 | 032085 | 1.24934
50 |0.59338 | 0.65553 50 | 0.32087 | 1.08940
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In probability theory, entropy quantifies the inherent unpredictability of a random variable. A higher
entropy value signifies a greater level of uncertainty in possible outcomes. Widely used in data anal-
ysis and computer science, entropy serves as a quantitative measure for assessing uncertainty within
datasets and systems. Below is a concise overview of the different types of entropy.

1. Rényi entropy (RE) is a key concept for estimating fractal dimensions. It is applied in ecology and
statistics as a diversity index, as well as in quantum information theory to quantify uncertainty
(see [26]). The RE of a random variable W following the TIIHLA distribution can be computed
as:

RE®W) =

1 (o)
: 010gU fﬂ(w;w,é)dw] 9>0, 9#1,
- 0

the term fﬁ(w; ¥, 0) can be stated as follows:

(o)

fﬁ(W; W, 6) = Z Ti ik Wt o~ G w

i.jk=0

Y il J 20 +i-1 o+i)—9 -1
Ti,j,k:(26)ﬂ l//k 29 (_1) J(i)( i+l )( ( +jl) ) )

where,

The integral of f?(w;, §) can be derived as:

f Flwp,8)dw = Z T,;J-,kf WA oW G W g
0 0

i,jk=0

i Fk+9+1)

= Tijk - .
R [(] + 19') w]k+0+l
Thus, the RE of the TITHLA distribution is given by:

1 - Ck+9+1)
—ﬂlog[ Z Thik [

RE(®) = —
R (VR0

1. Tsallis entropy (TE) has found widespread application across diverse fields, including physics,
complex systems analysis, information theory, and economics [28]. Its utility stems from its
capacity to characterize systems exhibiting long-range interactions or non-extensive behaviors,
notably non-equilibrium systems and phase transitions. Serving as a valuable instrument in sta-
tistical mechanics, TE offers a generalized framework surpassing traditional entropy measures for
the analysis of intricate systems and phenomena. The TE entropy for the TIIHLA distribution is
defined as:

TE(ﬁ):ﬁ[l—fom F(w;y, 6) dw] >0, 9 # 1

o0

rk+9+1)
- Z Tijk T k+9+1
i k=0 [+ D) ¢]

1

9 -1

(5.2)
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2. Arimoto entropy (AE) introduced by [29], is an extension of Shannon entropy that retains similar
characteristics. This entropy measure quantifies the average uncertainty inherent in a stochastic
variable, thereby reflecting its information content. The AE for the TITHLA distribution is given

by:
(fm F w30, 6) dw)ﬂ 1
0

9 a Th+o+1) |
= [Z ik — Mﬂ] ~1| . (5.3)
B i k=0 [+ D) y]

9
AE(ﬁ):m ;0>0, 9 #1

1. Havrda-Charvdt entropy (HCE) is a parametric extension of Shannon entropy, developed by [30].
It has been applied in various domains, including deep learning for pulmonary end microscopy
classification and training deep networks with limited datasets. The HCE for the TITHLA distri-
bution is given by:

HCE®®) = T f F(w;y,6) dw — 1] ;9>0, 91
- | JO
e T+9+1)
= Tijk — - (5.4)
21-9 _ 1 »i,;o J: [(]+ﬂ) w]k+9+l

Tables 3 and 4 display the numerical estimates of the entropy measures for the TITHLA distribution
across a range of parameter values. This comprehensive presentation provides valuable insights into
the variations of entropy under different conditions.

6. Order Statistics

Order statistics represent the values of a random sample when arranged in a specific order either
ascending or descending. They capture essential statistical measures such as the minimum, maxi-
mum, percentiles, and quartiles, all of which provide deep insights into the data distribution. Suppose
Wi, W,, ..., W, are independent random variables drawn from the TITHLA distribution. When these
variables are organized in ascending order as: Wy < Wy, < ... < W, . The pdf of the i order
statistic is given by:

A (U2 N < VRN I T B R
i:j;:(w’w’é)_Beta(i,n—i+l) JZ:(;( l)j( J )F W, 0). (6.1

Substituting the expressions from Equations (3.4) and (3.5) into Equation (6.1) and replacing m with
i+ j— 1, produces:

n—i

1 = ,
fwig,6) = Z Z 0¥ pg W VD (6.2)

B n—i+1
eta(i,n—i+1) =0 i,jk.v,b,1=0
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Table 3. Numerical values of the entropy for the TIIHLA distribution ( ¢ = 0.5 or ¢ = 0.8)

4161 9 =05 9 =0.8
REW) 1 | TE@) 1 | AE@) 1 | HCE@) 1 | REW) 1 | TE®) 1 | AE@) 1 | HCE®) 1
0.5 | 2.09616 | 3.70434 | 7.13487 | 4.47153 | 1.76560 | 2.11750 | 2.21952 | 2.84805
1.0 | 2.35604 | 4.49587 | 9.54908 | 5.42700 | 2.12813 | 2.65274 | 2.80955 | 3.56794
05 | 1-5 | 244678 | 479739 | 105511 | 579096 | 2.23840 | 2.82339 | 2.99989 | 3.79748
= [72.0] 249071 | 4.94835 | 11.0699 | 597318 | 2.28881 | 2.90267 | 3.08867 | 3.90411
3.0 | 2.53132 | 5.09085 | 11.5700 | 6.14520 | 2.33356 | 2.97371 | 3.16842 | 3.99966
5.0 | 2.54173 | 5.12785 | 11.7016 | 6.18987 | 2.36171 | 3.01872 | 3.21903 | 4.06020
0.5 | 1.40301 | 2.03358 | 3.06743 | 2.45474 | 1.07245 | 1.19615 | 1.22997 | 1.60882
1.0 | 1.66289 | 2.59327 | 4.27454 | 3.13036 | 1.43498 | 1.66209 | 1.72613 | 2.23552
| [ 15[ 1.75363 | 2.80648 | 4.77556 | 3.38772 | 154526 | 1.81066 | 1.88619 | 2.43535
2.0 | 1.79757 | 2.91322 | 5.03494 | 3.51657 | 1.59567 | 1.87967 | 1.96084 | 2.52817
3.0 | 1.83817 | 3.01399 | 5.28501 | 3.63820 | 1.64041 | 1.94152 | 2.02789 | 2.61135
5.0 | 1.86485 | 3.08132 | 5.45496 | 3.71949 | 1.66856 | 1.98070 | 2.07046 | 2.66406
0.5 | 0.70987 | 0.85217 | 1.03372 | 1.02866 | 0.37930 | 0.39406 | 0.39787 | 0.53001
1.0 | 0.96975 | 1.24794 | 1.63727 | 1.50639 | 0.74183 | 0.79969 | 0.81508 | 1.07559
, | 15| 1.06049 | 1.39869 | 1.88778 | 1.68837 | 0.85211 | 0.92902 | 0.94967 | 124954
2.0 | 1.10442 | 1.47417 | 2.01747 | 1.77948 | 0.90252 | 0.98910 | 1.01245 | 1.33035
3.0 | 1.14502 | 1.54542 | 2.14251 | 1.86549 | 0.94727 | 1.04294 | 1.06883 | 1.40276
50| 1.17170 | 1.59304 | 2.22748 | 1.92297 | 0.97541 | 1.07706 | 1.10463 | 1.44865
0.5 | 048672 | 0.55106 | 0.62697 | 0.15616 | 0.15862 | 0.15925 | 0.21335 | 0.15616
1.0 | 0.74660 | 0.90504 | 1.10982 | 0.51869 | 0.54655 | 0.55382 | 0.73511 | 0.51869
55 | 15| 0.83734 | 1.03988 | 1.31022 | 062897 | 0.67024 | 0.68111 | 0.90147 | 0.62897
= [2.0] 0.88128 | 1.10739 | 1.41398 | 0.67938 | 0.72770 | 0.74048 | 0.97875 | 0.67938
30| 092188 | 1.17112 | 1.51401 | 0.72412 | 0.77918 | 0.79381 | 1.04801 | 0.72412
50| 0.94856 | 1.21371 | 1.58198 | 0.75227 | 0.81181 | 0.82766 | 1.09188 | 0.75227
0.5 | 0.30440 | 0.32879 | 0.35581 | -0.02616 | -0.02610 | -0.02608 | -0.03510 | -0.02616
1.0 | 0.56428 | 0.65193 | 0.75818 | 0.33637 | 0.34794 | 0.35092 | 0.46798 | 0.33637
5 | 15[ 0.65502 | 077502 | 092519 | 04664 | 0.46720 | 0.47253 | 0.62839 | 0.44664
2.0 | 0.69895 | 0.83665 | 1.01165 | 0.49706 | 0.52260 | 0.52926 | 0.70290 | 0.49706
3.0 | 0.73956 | 0.89483 | 1.09500 | 0.54180 | 0.57225 | 0.58021 | 0.76967 | 0.54180
5.0 0.76624 | 0.93370 | 1.15165 | 0.56995 | 0.60370 | 0.61255 | 0.81198 | 0.56995
0.5 | -0.20643 | -0.19613 | -0.18651 | -0.23675 | -0.53699 | -0.50916 | -0.50251 | -0.68482
1.0 | 0.05345 | 0.05417 | 0.05491 | 0.06539 | -0.17446 | -0.17145 | -0.17071 | -0.23060
s | 15]0.14420 | 0.14952 | 0.15511 | 0.18049 | -0.06418 | -0.06377 | -0.06367 | -0.08577
2.0 | 0.18813 | 0.19726 | 0.20699 | 0.23811 | -0.01377 | -0.01375 | -0.01375 | -0.01850
3.0 | 022873 | 0.24232 | 0.25700 | 0.29251 | 0.03098 | 0.03107 | 0.03110 | 0.04179
5.0 | 0.25541 | 0.27244 | 0.29099 | 0.32886 | 0.05912 | 0.05947 | 0.05956 | 0.07999
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Table 4. Numerical values of the entropy for the TIIHLA distribution ( ¢ = 1.50r ¢ = 2)

o151 =15 9 =2
RE(W) 1 | TE@®) T | AE@) T | HCE(®) 1 | REW) 1 | TE@) 1 | AE@) T | HCE() 1
0.5 | 1.36591 | 0.98975 | 1.09723 | 1.68962 | 1.20724 | 0.70098 | 0.90634 | 1.40196
1.0 | 1.88280 | 1.21984 | 1.39838 | 2.08239 | 1.79273 | 0.83350 | 1.18390 | 1.66699
05 | 1-5 | 2.01490 | 126970 | 146738 | 2.16751 | 193247 | 0.85521 | 1.23897 | 171042
2 [2.0] 2.07214 | 1.29031 | 1.49634 | 2.20269 | 1.99206 | 0.86359 | 1.26131 | 1.72717
3.0 | 2.12131 | 1.30754 | 1.52079 | 223211 | 2.04278 | 0.87033 | 1.27981 | 1.74067
50| 2.15127 | 1.31784 | 1.53549 | 224969 | 2.07344 | 0.87425 | 1.29077 | 1.74850
0.5 | 0.67276 | 0.57130 | 0.60266 | 0.97526 | 0.51409 | 0.40196 | 0.45333 | 0.80391
1.0 | 1.18965 | 0.89668 | 0.98209 | 1.53073 | 1.09959 | 0.66699 | 0.84586 | 1.33398
| [ 15[ 132175 | 0.96720 | 1.06902 | 165111 | 1.23932 | 0.71042 | 0.92375 | 142084
2.0 | 1.37899 | 0.99634 | 1.10551 | 1.70086 | 1.29891 | 0.72717 | 0.95534 | 1.45434
3.0 | 1.42816 | 1.02072 | 1.13631 | 1.74247 | 1.34964 | 0.74067 | 0.98150 | 1.48133
5.0 | 1.45812 | 1.03528 | 1.15483 | 1.76733 | 1.38030 | 0.74850 | 0.99700 | 1.49699
0.5 | -0.02039 | -0.02049 | -0.02046 | -0.03498 | -0.17906 | -0.19609 | -0.18732 | -0.39218
1.0 | 0.49650 | 0.43967 | 0.45759 | 0.75057 | 0.40644 | 0.33398 | 0.36780 | 0.66796
5 | 15[ 062860 | 0.53940 | 0.56711 | 092082 | 0.54617 | 0.42084 | 047795 | 0.84168
2.0 | 0.68585 | 0.58061 | 0.61310 | 0.99117 | 0.60576 | 0.45434 | 0.52263 | 0.90868
3.0 | 0.73502 | 0.61509 | 0.65190 | 1.05002 | 0.65649 | 0.48133 | 0.55963 | 0.96266
50| 0.76497 | 0.63567 | 0.67523 | 1.08516 | 0.68715 | 0.49699 | 0.58154 | 0.99398
0.5 | -0.24353 | -0.25898 | -0.25369 | -0.40220 | -0.49511 | -0.44550 | -0.99023 | -0.40220
1.0 | 0.27336 | 0.25550 | 0.26127 | 0.18330 | 0.16748 | 0.17515 | 0.33496 | 0.18330
55 | 1.5 | 040546 | 0.36700 | 037925 | 0.32303 | 027605 | 0.29829 | 0.55210 | 032303
= [2.0] 046270 | 041308 | 0.42879 | 0.38262 | 0.31793 | 0.34825 | 0.63585 | 0.38262
30| 051187 | 0.45162 | 0.47059 | 0.43334 | 0.35166 | 0.38961 | 0.70333 | 0.43334
50| 0.54183 | 0.47464 | 049572 | 0.46401 | 0.37124 | 0.41411 | 0.74248 | 0.46401
0.5 | -0.42585 | -0.47459 | -0.45756 | -0.81017 | -0.58452 | -0.79414 | -0.67891 | -1.58827
1.0 | 0.09104 | 0.08900 | 0.08967 | 0.15192 | 0.00097 | 0.00097 | 0.00097 | 0.00195
, | 15[ 022314 | 021114 | 0.21504 | 036044 | 0.14071 | 0.13126 | 0.13587 | 0.26251
2.0 | 0.28038 | 0.26161 | 0.26768 | 0.44660 | 0.20030 | 0.18151 | 0.19059 | 0.36302
3.0 | 0.32955 | 0.30383 | 0.31210 | 0.51867 | 0.25102 | 0.22200 | 0.23591 | 0.44399
5.0 | 0.35951 | 0.32905 | 0.33880 | 0.56172 | 0.28168 | 0.24549 | 0.26275 | 0.49098
0.5 | -0.93668 | -1.19468 | -1.09939 | -2.03944 | -1.09535 | -1.99022 | -1.45845 | -3.98045
1.0 | -0.41979 | -0.46710 | -0.45058 | -0.79738 | -0.50985 | -0.66505 | -0.58073 | -1.33009
5 | 15[ -0.28769 | -0.30041 | -0.30194 | -0.52820 | -0.37012 | -0.44791 | -0.40658 | -0.89581
2.0 | -0.23045 | -0.24425 | -0.23953 | -0.41696 | -0.31053 | -0.36415 | -0.33594 | -0.72830
3.0 | -0.18127 | -0.18974 | -0.18686 | -0.32391 | -0.25980 | -0.29667 | -0.27743 | -0.59335
5.0 | -0.15132 | -0.15719 | -0.15520 | -0.26834 | -0.22914 | -0.25752 | -0.24278 | -0.51504
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where,

i+j+v—2]{ Sv+i+j—1) ][b

(51//k+l+2,
v b ) ]

U*i,j,v.b,lzzi” (_1)v+b+i+j (i+1)

(i+1)o—1 ][j][n—i
J k J

and Beta(a, b) = fol s (1 — s)P~'ds refers to the beta function.
7. Parameters Estimation

ML estimation represents a principal method for determining distribution parameters. This technique
involves maximizing the likelihood function to determine the parameter values under which the ob-
served data are most likely, given a specific statistical model. As a result of its efficacy, the ML method
finds broad application in disciplines such as economics, finance, and the biological sciences for pa-
rameter inference and predictive analysis.

This section explores the ML estimators for the parameters of the proposed model. Let wy, way, ..., w,
be a random sample of size n drawn from the TIIHLA distribution; parameterized by ¢ and J. Define
YT = (, o6)as the parameters vector, the log-likelihood function (LL) for the TIIHLA model is
expressed as:

A, =nlog[26] + 2nlog[w] + ) loglwil + @ —1) " log[l - (1+y w) ™
i=1 i=1

—22’1" log[l (1= (1 +yw) e—Wf)é] —wzn]w,-. (7.1)
i=1 i=1

The ML equations are obtained by differentiating Equation (7.1) with respect to parameters ¢ and 9.
The resulting equations are given, respectively, by:

A A

04, _In Y Wi—(g—l)znlwie_lzwi—wi 1+ w) e
(91// v i=1 i=1

b 1= (1+ wy) edm

n 5w [1 —(1L+§ w) eV W"]S_l AL

-2 - =0, (7.2)
P L [1= (1 + i wy) el
and .
6(;‘8” = g + Z log |1 = (1+4 w;) e

g1 - (14w ] (1= (14w )]

i1 L+ (1= [+ wy) e—l@w:-)g

Newton’s method, or other optimization algorithms, can be employed to solve Equations ((7.2)—(7.3))

-2 =0. (7.3)

~ A T
by identifying the parameter vector Y'= (://, 6) that maximizes the likelihood function, thus evaluating
model fit.
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8. Simulation Study

Monte Carlo simulation approximates the desired parameters through iterative random sampling of
input values, subsequent execution of simulations based on these values, and rigorous analysis of
the resultant data. This approach proves particularly beneficial for estimating complex models where
analytical solutions are either impractical or infeasible. This simulation technique is commonly utilized
in various areas, including finance, engineering, and physics. It can be used to estimate the probability
distribution of the outcomes and verify a model’s response to different input parameters. In this study,
we performed 1000 iterations of the simulation, with Equation (2.1) generating sample sizes of (50,
100, 150, 200, 300, 400 and 500), to evaluate the efficiency of the TIIHLA model through its parameter
vector T = (¢, 6). The actual parameter values for the simulated estimates were: Case I: (¢ =2 ,0 =
0.5),Casell: (¢ =3,0=1),Caselll: (¢ =5,0=4)and Case IV: (¢ =10 ,6 =7.5).
The parameters were estimated by optimizing the LL presented in Equation (7.1) using the Newton-
Raphson method in Wolfram Mathematica 13. A ML estimation method was employed. To evaluate
the accuracy of the ML estimates at a 95% confidence level, we computed the average parameter
estimates, mean squared errors (MSE), average bias (Bias), coverage probability (CP) and the average
length of the confidence intervals (CI). The following equations were used to obtain the average MSEs
and bias from the simulated estimates:

1000 , 2 1000 ,
MSEy(n) = 5 ¥ (T =) and Biasy (n) = 135 ) (T: = T) where, T = (i, ) .

i=1

The CP measures the reliability of confidence intervals by quantifying the proportion of times they
contain the true parameter value across repeated samples or simulations. A CP close to the nominal
confidence level (e.g., 95%) indicates accurate interval estimation by the estimation method.

Tables 5-8 reveal that, as n increases, the ML estimates reach the optimal dimensions for all parameter
choices. As n increases, the MSEs decrease until they reach zero, as expected. Furthermore, the CPs of
the confidence intervals roughly match the assumed certainty level (95%). With a larger sample size,
the CI for each parameter increases, indicating that asymptotic results are effective at estimating and
describing confidence intervals.

Table 5. Numerical outcomes [Case —I]

=2 n=50 n=100 n=150 n=200 n=300 n=400 n=>500
U 2.135910 2.077140 2.060160 2.049040 2.040000 2.033080 2.032750
Bias 0.135910 0.077141 0.060164 0.049044 0.040003 0.033077 0.032749
MSE 0227135 0.107547 0.066695 0.049518 0.032577 0.022901 0.019175
95% CI 1.791540 1.250090 0.984996 0.851283 0.690276 0.579161 0.527675
95% CP 0932 0.938 0.936 0.936 0.94 0.943 0.947
0=05 n=50 n=100 n=150 n=200 n=300 n=400 n=>500
0 0.530308 0.518168 0.514730 0.512799 0.511442 0.510041 0.509683
Bias  0.030308 0.018168 0.014730 0.012799 0.011442 0.010041 0.009684
MSE 0.007856 0.003412 0.002196 0.001671 0.001153 0.000831 0.000707
95% CI 0.326671 0.217724 0.174463 0.152272 0.125377 0.105975 0.097141
95% CP  0.929 0.934 0.933 0.931 0.931 0.934 0.934
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Table 6. Numerical outcomes [Case — II]

=3 n =50 n =100 n =150 n =200 n =300 n =400 n =500
v 3.120690 3.057490 3.040640 3.029160 3.019420 3.012370  3.011960
Bias 0.120690 0.057485 0.040641  0.029165 0.019424  0.012369 0.011962
MSE 0.306628 0.148985 0.0910388 0.0687088 0.0452946 0.0323819 0.0266562
95% CI 2.119540 1.496940 1.172580 1.021660 0.831209 0.704087  0.638607
95% CP 0.939 0.948 0.94 0.946 0.947 0.949 0.95
0=1 n =150 n =100 n =150 n =200 n =300 n =400 n =500
1) 1.057890 1.026410 1.017910 1.013150 1.009430 1.006110  1.005240
Bias 0.057892 0.026408 0.017908  0.013153  0.009428 0.006113  0.005241
MSE 0.044585 0.018555 0.011530 0.008671  0.005783  0.004110 0.003451
95% CI 0.796391 0.524100 0.415226 0.361537  0.295958  0.250290  0.229464
95% CP 0.929 0.934 0.933 0.931 0.931 0.934 0.934
Table 7. Numerical outcomes [Case — 1]
=3 n=>50 n=100 n =150 n =200 n =300 n =400 n =500
aﬁ 5.135670 5.062630 5.044420 5.028930 5.020140  5.01267 5.012060
Bias 0.135670 0.062633 0.044423 0.028926 0.020143 0.0126666 0.012061
MSE 0.474832 0.234677 0.141511 0.0851737 0.071571 0.0521852 0.0422785
95% CI 2.649650 1.883990 1.465040 1.138970 1.046250 0.894557  0.805035
95% CP 0.941 0.949 0.951 0.942 0.946 0.952 0.949
0=4 n =50 n=100 n=150 n =200 n =300 n =400 n =500
0 4399700 4.179020 4.118290 4.074970 4.058830 4.038730 4.033120
Bias 0.399703 0.179024 0.118285 0.074968 0.058827 0.038732  0.033122
MSE 1.792740 0.681520 0.393892 0.228786 0.190824 0.135055 0.112102
95% CI 5.011790 3.160700 2.417340 1.852750 1.697640 0.948000  1.306700
95% CP 0.939 0.947 0.938 0.942 0.954 0.946 0.941
Table 8. Numerical outcomes [Case — V]
y=10 n=50 n=100 n=150 n=200 n=300 n=400 n=500
tﬁ 10.25150 10.1157 10.0822 10.0589 10.0373 10.0238 10.022500
Bias 0251472 0.11565 0.08215 0.05893 0.03726 0.02383 0.022482
MSE 1.640050 0.81019 0.48613 0.37119 0.24648 0.18058 0.145615
95% CI 4.924850 3.50092 2.71545 2.37825 1.94164 1.66402 1.494000
95% CP 0942 0949 0951 095 0947  0.949 0.95
§=75 n=50 n=100 n=150 n=200 n=300 n=400 n=>500
0 8.48006 7.93606 7.78470 7.70982 7.64058 7.59426 7.580530
Bias 0.98006 0.43606 0.28470 0.20982 0.14058 0.09426 0.080529
MSE 10.00220 3.57563 1.98689 1.47034 0.94561 0.66643 0.550020
95% CI 11.79310 7.21629 5.41435 4.68393 3.77375 3.18027 2.891460
95% CP 0940 0944 0937 0944 0951  0.945 0.943
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9. Applications

Several publications have used AD to look at data for a component reliability investigation. This
study employed two real data sets to demonstrate the adaptability of the TIIHLA model in the field of
medical science. The first data set includes COVID-19 mortality rates in the United Kingdom over a
76-day period, from April 15 to June 30, 2020. Mubarak and Almetwally [31] recently investigated
this data. The second dataset, established by [32], has 128 records demonstrating the durations of
radiation therapy (measured in months) of people who were diagnosed with bladder cancer.

In each case, the ML approach was used to estimate the distribution parameters. The versatility of the
proposed model was evaluated using several criteria: the negative log-likelihood (-LL), Akaike’s infor-
mation criterion (AIC), Bayesian information criterion (BIC) and Hannan-Quinn information crite-
rion (HQIC). In addition, supplemental performance measures, including: the Anderson-Darling (A*),
Cramér-Von Mises (W*) and Kolmogorov-Smirnov statistic (K-S) along with P-value; were applied to
help identify the most suitable model among the alternatives. Ultimately, the model that recorded the
lowest scores along with the highest P-value for the K-S test was considered the most effective.

We examined the precision of the TITHLA distribution to five alternative lifetime models, which are
presented in the table below.

Table 9. The competitive lifetime models

Distribution Abbreviation CDF Authors
Ailamujia AD F,)y=1-(1+ywye? ; w>0, y>0 [1]
Exponentiated Ailamujia EA F,(W,y) = [1 —(1+2¢y w) e‘z‘/’x]y s w>0,0>0,vy>0 [7]
Exponentiated Exponential EE F,(, ) = [1 - e"”wr cw>0,0>0,4>0 [33]
Gamma GD Fo(f,a) = % cw>0,0>0,0>0 [34]
. . (I+y+ wye ™ g .
Generalized Lindley GL F,(,0) = [1 - T] sw>0,0>0,6>0 [35]

Ref. [36] developed a total time test (T'TT) plot, a powerful graphical tool for evaluating the suitability
of data for a specified distribution. Figure 6 illustrates the TTT plots for both datasets. As noted in
Aarset’s study, the TTT plot for the COVID-19 data exhibits a convex shape, which indicates that
its empirical hazard rate is decreasing. In contrast, the TTT plot for bladder cancer diagnostic data
displays a concave-convex pattern that resembles an upside-down bathtub shape in its hazard rate.
Tables 10 and 13 present the ML estimates for the parameters of each competitive model for the respec-
tive datasets, with standard errors (SEs) provided in parentheses. Simultaneously, Figures 7 and 10
illustrate the profile log-likelihood functions for various parameter values within the ML framework.
These functions exhibit a distinctly concave shape with clear peaks corresponding to the ML estimates,
thereby confirming a unique solution for parameter estimation.

Tables 11 and 12 display the goodness of fit measures for COVID-19 data, including (-LL, AIC, BIC
and HQIC) along with the empirical results for the (A*, W*, K-S and P-value (K-S)). Similarly, Tables
14 and 15 provide comparable metrics for bladder cancer data.

Figures 8 and 11 display the estimated pdf and the estimated SF for both data sets, while Figures 9 and
12 provide the Q—-Q plots for all fitted models. These visual representations of Covid-19 and bladder
cancer data align with the numerical findings, clearly highlighting the superior fit of the proposed
model compared to the alternative distributions.
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(a) Scaled TTT Plot for COVID-19 data (b) Scaled TTT Plot of Bladder
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Figure 6. TTT Plots for (a) COVID-19 data and (b) bladder cancer data.

Table 10. The ML estimates and their SEs are in parentheses for the COVID-19 data

Model Estimates
TIHLA(y,8) ¢ =0.381825 6 = 0.48179
(0.065261) (0.059488)

=0.227915 ¥ =0.383405
(0.034752) (0.054577)
EE(y, 1) ¥ = 0.353033 A =0.800936
(0.056935) (0.117064)
GL(y, 6) ¥ =0.617324 0 = 0.49989
(0.092947) (0.067401)
GD(y, a) ¥ = 0.803738 & = 3.03233
(0.112543) (0.575166)
AD(y) ¥ = 0.820616 -
(0.066561) -

EAW.y) ¢

Table 11. -LL, AIC, BIC and HQIC statistics for the COVID-19 data

Model -LL AIC BIC HQIC
TIIHLA 140.6870 285.3750 290.0360 287.2380
EA 142.8640 289.7280 294.3890 291.5910
EE 142.5030 289.0060 293.6670 290.8690
GL 145.3660 294.7310 299.3930 296.5940
GD 142.4100 288.8210 293.4820 290.6840
AD 170.4310 342.8620 345.1930 343.7940
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Figure 7. Plots of the log-likelihood profile for COVID-19 data.

Table 12. The A*, W*, K-S and P-value (K-S) metrics for the COVID-19 data

-140.70 »
_140.75;
-140.80 » 7
—140.85; !

-140.90 -

-140.95

Model A* W K-S P-Value (K-S)

TIHHLA  0.638491 0.095125 0.081957 0.687002
EA 1.152040 0.196822 0.100622 0.424959
EE 1.038420 0.173011 0.098546 0.451593
GL 1.595560 0.271653 0.111173 0.304503
GD 0.984292 0.161130 0.096156 0.483318
AD 16.794600 1.946630 0.282402 1.09E-05

10. Concluding Remarks

This paper describes a novel two-parameter distribution constructed from the type II half-logistic-

G family and Ailamujia distribution.

This distribution is referred to as the type II half-logistic

Ailamujia distribution. A number of statistical characteristics were computed for the type II half-
logistic Ailamujia distribution. These characteristics include moments, moment-generating function,
probability-weighted moment, incomplete moments, conditional moments, mean deviation, Lorenz
and Bonferroni curves, mean residual life, mean inactivity time, and order statistics. Calculations and
theoretical and numerical discussions were conducted using several uncertainty metrics. In addition,
the maximum likelihood estimation technique is utilized to estimate the two parameters of the type
A comprehensive numerical procedure was performed to

II half-logistic Ailamujia distribution.

determine whether the maximum likelihood estimation technique was effective. Examining two real
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Estimated Density Function

Figure 8. Plots of the (a) estimated pdf and (b) estimated SF for COVID-19 data.
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Figure 9. Q-Q plots for the COVID-19 data
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Table 13. The ML estimates and their SEs (in parentheses) for the bladder cancer data

Model Estimates
TIIHLA(®,6) ¢ = 0.127061 6 = 0.696652
(0.015033) (0.072639)
EA(W,y) =0.077055 % =0.570522
(0.008243) (0.067672)
EE@,1) ¢ =0.121167 2A=1.21795
(0.013573) (0.148836)
GL@W,0)  § =0.733631 6 =0.16487
(0.09117) (0.016635)
GD(, ) g =1.17251 & =17.98766
(0.130835) (1.10433)
AD(®) g = 0.213547 -

(0.013347) -

Table 14. -LL, AIC, BIC and HQIC statistics for bladder cancer data

Model -LL AlIC BIC HQIC

TIIHLA 411.7190 827.4390 833.1430 829.7560
EA 414.5260 833.0520 838.7560 835.3690
EE 413.0780 830.1550 835.8590 832.4730
GL 416.2860 836.5720 842.2760 838.8890
GD 413.3680 830.7360 836.4400 833.0530
AD 426.7970 855.5930 858.4450 856.7520
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Figure 10. Plots of the log-likelihood profile for bladder cancer data.

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue 2, 379-406



403

Table 15. The A*, W*, K-S and P-value (K-S) metrics for the bladder cancer data

Estimated Density Function

Figure 11. Plots of the (a) estimated pdf and (b) estimated SF for the bladder cancer data.

Model A* W K-S P-value (K-S)

TIIHLA 0.467076 0.080071 0.059393 0.757272

EA 1.015740 0.187000 0.083640 0.332073

EE 0.718193 0.128403 0.072515 0.511320

GL 1.332020 0.247859 0.092790 0.220388

GD 0.776249 0.136063 0.073295 0.497389

AD 5.391120 0.841091 0.141385 0.011984
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Figure 12. Q-Q plots for the bladder cancer data
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datasets makes it possible to determine the applicability and importance of the recently developed
model. Several well-known statistical distributions, including the Ailamujia, exponentiated Ailamujia,
exponentiated exponential, gamma, and generalized Lindley models, are compared to the type II half-
logistic Ailamujia distribution. This comparison was performed using a variety of metrics. According
to the results of the numerical analysis, the type II half-logistic Ailamujia model provided the best fit
for the data compared to the other competing models. The limitation of this article lies in the estimation
of the distribution parameters using the maximum likelihood estimation technique only using the com-
plete samples. Therefore, in the future, we intend to use Bayesian and other estimate techniques for
parameter estimation of the type II half-logistic Ailamujia model utilizing different censoring schemes.

Data Availability: The data that support the findings of this study are available upon request from the
corresponding author.

Author contributions: All authors have accepted responsibility for the entire content of this
manuscript and approved its submission.
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