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on statistical inference for the inverted Weibull distribution under a step-stress partially ALT (SSPALT) model with a unified
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estimates based on the assumption of independent gamma priors. Since Bayesian estimators cannot be derived analytically,
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1. Introduction

It is crucial to make products with a longer lifetime because in many industrial domains, rapid
industrial progress, a variety of production techniques, and company competitiveness are necessary
for enhancing product quality. Technological innovations have consistently improved the manu-
facturing of products. Consequently, gathering failure data for high reliability components under
normal operating circumstances is difficult. Under normal conditions, lifelong testing is costly and
time-consuming as a result. In order to speed up the assessment of product reliability in accelerated
environmental circumstances, accelerated life tests (ALTs) and partial ALTs (PALTs) have gained
widespread acceptance.

Test units are subjected to considerably more stress during ALTs in order to increase the possibility
of noticing failures through step-stress ALTs (SSALTs). Test units are put through higher than normal
operating or design stress levels, such as temperature, voltage, humidity, vibration, dust, mechanical
stress, pressure, force, and use-rate, in order to minimise the test period. These observed accelerated
failure times can then be used to draw conclusions about the real lifetime distribution under typical
use situations. When performing ALTs, various stress types, including SSPALTs, random stress
ALTs, and constant stress ALTs, are used. A test unit is stressed at progressively higher levels during
SSALTs. A test unit goes through a series of stress procedures, beginning with a low stress level that
is maintained for a predetermined amount of time. The stress level is raised and maintained for an
additional predetermined amount of time if the unit survives this initial stress. Until the unit collapses,
this procedure is repeated with ever higher stress levels. Notably, the stress levels and durations in
each test unit usually follow a consistent pattern. SSPALTs have been extensively studied under a
variety of distributional assumptions. Table 1 lists the research related to SSPALT that uses various
censoring approaches for various failure models.

Assume n identical items are the independent and identically distributed lifetimes and
y1:n, y2:n, ..., yn:n items that are ordered according to failure times. Epstein [22] introduced the hybrid
censoring scheme (HCS); the test is completed if a predetermined number of items, 1 ≤ r ≤ n, of n,
fail or when a predetermined period T = (0,∞) is reached. If the experiment ends at a random time,
T ∗1 = min(yr:n,T ) this is type I (T-I) HCS (T-I HCS). The main issue with this type is a relatively low
failure rate up to the predefined time T ∗1 .

Childs et al. [17] presented type II (T-II) HCS (T-II HCS), which ensures a fixed number of failures
and has a termination time T ∗2 = max(yr:n,T ). This method’s potential for long testing periods, however,
is a major disadvantage because it could take a long time to notice the necessary number of failures
and finish the life test.

Chandrasekar et al. [15] introduced generalized T-I HCS (GT-I HCS) and generalized T-II HCS
(GT-II HCS). Considering k, r∈(1, 2, ..., n) and time T∈(0,∞): The two schemes have the following
description:

• GT-I HCS with k < r ; T ∗ = min(yr:n,T ) if the kth failure happens before the time T and T ∗ = yk:n

if the kth failure happens after the time T .

• GT-II HCS, with T1,T2∈(0,∞) where T1 < T2. If the rth failure occurs before time, T1; so T ∗ = T1
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Table 1. Review of the literature related to proposed work

Author(s) name Method Scheme Failure model

Bai et al. [11] PALT Type I censoring Log Normal distribution

Bai and Chung [12] CSPALT Type I censoring Exponential distribution

Hassan et al. [26] CSPALT Type I and II censoring Weibull distribution

Abdel Ghaly et al. [3] SSPALT Type I and Type II censoring data Weibull distribution

Abdel Ghaly et al. [2] SSPALT Type II censoring data Pareto distribution

Abdel-Ghani [4] SSPALT Type I censoring data log logistic distribution

Ismail[35] SSPALT Type I censoring data Gompertz distribution

Abd-Elfattah et al. [1] SSPALT type I censoring Burr Type-XII distribution

Ling et al. [38] SSALT
Progressive Type-I hybrid
censoring scheme

Exponential distribution

Ismail and Aly [35] SSPALT Type - II censoring Weibull distribution

Hassan, and Al-Thobety [25] SSPALT Type - II censoring Inverted weibull distribution

Ismail [33] SSPALT
Adaptive Type-I progressive
hybrid censoring scheme

Weibull distribution

Ismail [32] SSPALT
Adaptive Type-II progressive
hybrid censoring scheme

Weibull distribution

El-Din et al. [20] SSPALT Progressive Type-II censoring
Extension of Exponential
distribution

Hassan et al. [24] SSPALT
progressive censoring with
random removal

Pareto distribution

Ismail [31] SSPALT
Progressive Type-II censoring
scheme

Generalized Rayleigh
distribution

Nassar et al. [42] SSPALT
Adaptive Type-I/Type-II progressive
hybrid censored schemes

Burr Type-XII distribution

Xiaolin et al.[45] SSPALT Progressive Type-II hybrid censored Modified Weibull distribution

Alam and Ahmed [9] SSPALT
Adaptive Type-II progressive
hybrid censored

Exponentiated Pareto
distribution

Hassan et al. [27] SSPALT
Adaptive Type-II progressive
hybrid censored

Lomax
distribution

Bantan et al. [14] SSPALT Progressive type-II censored Weighted Lomax distribution

Alam et al.[8] SSPALT
Adaptive progressively
hybrid censored schemes

Odd Lindley Half-Logistic
distribution

Lone and Panahi [39] CSPALT Unified hybrid censored Gompertz distribution

Alotaibi et al. [41] CSPALT
Type-I Progressive
Censored Data

Alpha Power Exponential
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and T ∗ = yr:n if the rth failure between T1 and T2; otherwise, T ∗ = T2.

Balakrishnan et al. [13] presented UHC scheme (UHCS) that combines GT-I HCS and GT-II HCS
in order to overcome the limitations of both types. Consider r, k∈(1, 2, ..., n) and the time points
T1,T2∈(0,∞) in this scheme. T ∗ = min(max(yr:n,T1),T2) if the kth failure occurred prior to time T1.
T ∗ = min(yr:n,T2) if the kth failure happens between T1 and T2, and T ∗ = y(k:n), if the kth failure happens
after T2. Using this censoring strategy, we can guarantee that the experiment will be completed in
time T2 with at least k failures, and if not, exactly k failures. As a result, we have the six cases under
this UHCS (see Table 2). For more studies about UHCS, refer to Rad and Izanlo [44], Panahi and
Sayyareh [43], Joen and Kang [36], Helmy et al. [29], Abo-Kasem et al.[5], Abushal [6]

Table 2. Test completion cases under UHCS

Cases UHCS Terminated time Number of failure units
1 0 < yk:n < yr:n < T1 < T2 T1 d1

2 0 < yk:n < T1 < yr:n < T2 yr:n r
3 0 < yk,:n < T1 < T2 < yr:n T2 d2

4 0 < T1 < yk:n < yr:n < T2 yr:n r
5 0 < T1 < yk:n < T2 < yr:n T2 d2

6 0 < T1 < T2 < yk:n < yr:n yk:n k

Despite the popularity of the inverse Weibull (IW) distribution and the flexibility of the UHCS
in modeling lifespan data, no study has yet investigated parameter estimation for the IW distribution
under SSPALT using UHCS. In order to fill this gap, this work uses UHCS samples to propose maxi-
mum likelihood (ML), maximum product spacing (MPS), and Bayesian estimate methods for the IW
distribution under SSPALT. The following are this paper’s main goals:

• Employ ML and MPS methods to derive point and interval estimators for the model parameters.

• Implement Bayesian estimation techniques to obtain Bayesian point and interval estimates.

• Construct bootstrap confidence intervals (CIs) based on the ML and MPS methods. In addition
to, provide credible intervals based on the Bayesian method.

• Conduct a simulation study to compare the efficiency of the derived estimators in terms of mean
squared error and bias.

• Examine actual data to demonstrate the usefulness of the suggested estimators and the accelera-
tion factor.

The layout of the article is as follows: The model and assumptions are described in detail in Section
2. The ML estimators and CIs of the model parameters are given in Section 3. The MPS estimators for
the SSPALT model based on UHCS are given in Section 4. In Section 5, the Bayesian estimator of the
model parameters are discussed. The simulation study as well as application with real data are given,
respectively, in Sections 6 and 7. Finally, the conclusions are given in Section 8.
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2. Inverted Weibul Distribution under Assumptions of SSPALT

The IW distribution is an important lifetime model and has many applications, including reliability,
life testing, and survival analysis. The IW distribution is crucial because of the non-monotonicity of the
hazard rate; it has applications in the research of mortality and breast cancer. Keller et al. [37] showed
that the IW distribution fits failure data of pistons, crankshafts, main bearings, etc. The IW distribution
is more closely related than the exponential and Weibull distributions in the degradation of mechanical
components of diesel engines. According to research by Akgul et al. [7], the IW distribution fits
the wind speed data more closely than the Weibull distribution does. The IW distribution has several
uses in network design, risk management, financial issues, data analysis related to earthquakes and
flood levels, and other extreme value distributions. The probability density function (PDF) of the IW
distribution, with scale ( θ ) and shape (α) parameters, is given below as

f (y; θ, α) = θαy−α−1e−θy
−α

; y, α, θ > 0, (2.1)

The following is the cumulative distribution function (CDF):

f (y; θ, α) = e−θy
−α

; y, α, θ, > 0. (2.2)

The survival and hazard rate functions are as follows:

f (y; θ, α) = 1 − e−θy
−α

, (2.3)

and,

f (y; θ, α) =
θαy−α−1e−θy

−α

1 − e−θy−α
. (2.4)

DeGroot and Goel [19] introduced the concept of SSPALT, the test procedure and its assumptions
are described as follows:

Y =

T ; 0 < T < τ

τ + (T − τ)/β; T ≥ τ
(2.5)

where T is the lifetime of an item under usual operating conditions, τ is the stress change time, and
β(> 1) is the acceleration factor. The PDF and CDF of Y under the SSPALT model are given by

f (y) =

 f1(y) = θαy−α−1(e−θy
−α

); 0 < y < τ

f2(y) = θαβ[τ + β(x − τ)]−α−1(e−θ[τ+β(y−τ)]
−α

); y ≥ τ,
(2.6)

and CDF is given as follows:

f (y) =

F1(y) = e−θy
−α

; 0 < y < τ

F2(y) = e−θ[τ+β(y−τ)]
−α

; y ≥ τ.
(2.7)

The main assumptions of the test procedure in SSPALT, based on UHCS, are considered as follows:
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Figure 1. Description of the UHCS within the SSPALT Framework

1. n identical and independent units, with a common IW distribution, are put on the life test.

2. The test is terminated at the integers r, k∈(1, 2, ...,n) and the time points T1,T2∈(0,∞) in this
scheme. T ∗=min(max(yr:n,T1),T2) if the kth failure occurred prior to time T1. T ∗=min(yr:n,T2)
if the kth failure happens between T1 and T2, and T ∗=yk:n, if the kth failure happens after T2.

3. Each of the n units is first operated under normal operating conditions. If it does not fail from the
test by a pre-specified time, it is put under an accelerated condition (stress).

4. Some failures may arise under normal operating conditions, while others may occur during peri-
ods of accelerated stress. In other words, at least one failure must occur under normal conditions
before time τ, and at least one failure must occur under accelerated conditions. As a result, under
the UHCS, we observe the six cases illustrated in Figure 1. One of these cases will be examined
in detail using a specific sample:

Case 1: 0<y1:n<y2:n< ... <ynu:n < τ<ynu+1:n< ... <yd1:n, ; i f ; yk:n<yr:n< T1 ,
Case 2: 0<y1:n<y2:n< ... <ynu:n < τ<ynu+1:n< ... <yr:n, ; i f ; yk:n< T1< yr:n,
Case 3: 0<y1:n<y2:n< ... <ynu:n < τ<ynu+1:n< ... <yd2:n, ; i f ; yk:n< T1< T2 ,
Case 4: 0<y1:n<y2:n< ... <ynu:n < τ<ynu+1:n< ... <yr:n, ; i f T1<yk:n< yr:n,
Case 5: 0<y1:n<y2:n< ... <ynu:n < τ<ynu+1:n< ... <yd2:n, ; i f T1<yk:n< T2,
Case 6: 0<y1:n<y2:n< ... <ynu:n < τ<ynu+1:n< ... <yk:n, ; i f T1< T2< yk:n.

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue 1, 162–185
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3. Maximum Likelihood Estimators

In this section, the model parameters and accelerated factor are estimated via ML method. The
likelihood function of the parameters is given by:

L(data|Ψ) =
n!

(n − D)!
[1 − F(C)]n−D

 nu∏
i=1

f1(y)


 D∏

i=nu+1

f2(y)

 , (3.1)

where Ψ = (α, β, θ)T is the set of parameters, D denotes the total number of unsuccessful experi-
ments up to time C and as stated by

(D,C) =


d1,T1 f or; case 1
r, yr f or; case 2, 4
d2,T2 f or; case 3, 5
k, yk f or; case 6,

where the number of failures prior to T1 and T2 is indicated by d1 and d2. One may obtain the
unified likelihood function by substituting Equations (2.6) and (2.7) in Equation (3.1)

L(Ψ) ∝
nu∏
i=1

θαy−α−1
i e−θy

−α
i

D∏
i=nu+1

θαβ[A1]−α−1e−θ[A1]−α [1 − e−θ[A2]−α]n−D, (3.2)

where yi is written instead of yi:n for simplified from which represents the units for the items obtained
from IW distribution, i = 1, 2, ..., ni, A1 = τ+β(yi − τ), A2 = τ+β(C − τ) . Thus, the log-likelihood
function, represented by lnL, can be given as:

lnL = D log θ + D logα + (D − nu) log β − (α + 1)
nu∑

i=1

log yi − θ

nu∑
i=1

y−αi

− (α + 1)
D∑

i=nu+1

log A1 − θ

D∑
i=nu+1

A−α1 + (n − D) log[1 − e−θ[A2]−α].

(3.3)

To obtain the ML estimators for the unknown parameters θ, α and β, we maximize the likelihood
function given in Equation (3.3). By partially differentiating this function with respect to each param-
eter, we obtain the following system of equations:

∂lnL
∂θ
=

D
θ
−

nu∑
i=1

y−αi −

D∑
i=1

A−α1 +
(n − D) [A2]−α

eθ[A2]−α − 1
, (3.4)

∂lnL
∂α
=

D
α
−

nu∑
i=1

log yi + θ

nu∑
i=1

y−αi log yi + θ

D∑
i=1

A−α1 log A1

−

D∑
i=1

log A1 −
θ(n − D) [A2]−α log [A2]

eθ[A2]−α − 1
,

(3.5)
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and,

∂lnL
∂β
=

D − nu

β
− (α + 1)

D∑
i=1

(yi − τ)
A1

+ θα

D∑
i=1

A−α−1
1 (yi − τ) −

θα(n − D)(C − τ) [A2]−α−1

eθ[A2]−α − 1
.

(3.6)

To obtain the ML estimators of θ, α and β, the nonlinear system of Equations (3.4), (3.5) and
(3.6) are to be solved numerically using R 4.1.2 software with the ‘maxLik’ package introduced by
Henningsen and Toomet [30].

3.1. Asymptotic Confidence Interval

In this subsection, the asymptotic CIs (ACIs) of the parameters θ, α and the acceleration factor
β based on the ML method are derived. The Fisher information matrix (FIM) is used to obtain the
asymptotic variances of ML estimators (see Cohen [18]). The expected FIM is given by:

F =


∂2lnL
∂θ2

∂2lnL
∂θ∂α

∂2lnL
∂θ∂β

∂2lnL
∂α∂θ

∂2lnL
∂α2

∂2lnL
∂α∂β

∂2lnL
∂α∂β

∂2lnL
∂θ∂β

∂2lnL
∂β2

 =

I11 I12 I13

I21 I22 I23

I31 I32 I33

 .
The second partial derivative for θ, α and β are provided as follows:

I11 =
−D
θ2
−

(n − D) [A2]−2α
[
eθ[A2]−α

]
[
eθ[A2]−α − 1

]2 ,

I22 = −
D
α2 − θα

∑nu

i=1 y−αi
(
log yi

)2
− θ
∑D

i=1
[
τ+β(x − τ)

]−α log
[
τ+β(x − τ)

]2
+

(n−D)[A2]−α(log A2)2[(
eθ[A2]−α−1

)
−θeθ[A2]−α

]
[eθ[A2]−α−1]2

,

I33 = −
D−nu
β2 + (α + 1)

∑D
i=1

(yi−τ)2

A2
1
− θα

∑D
i=1 A−α−1

1 (yi − τ)2

+
θα(n−D)(C−τ)2[A2]−α−2

[
(α+1)

(
eθ[A2]−α−1

)
−θαeθ[A2]−α [A2]−α

]
[eθ[A2]−α−1]2

,

I12=I21 =
∑nu

i=1 y−αi log yi +
∑D

i=1 A−α1 log A1

+
(n−D)(A2)−α log[A2]

[(
eθ[A2]−α−1

)
−θeθ[A2]−α

]
[
eθ[A2]−α−1

]2 ,

I13 = I31 = α
∑D

i=1
[
τ+β(x − τ)

]−α−1 ; (yi − τ)

−
(n−D)α[A2]−α−1(C−τ)

[(
eθ[A2]−α−1

)
−θ[A2]−αeθ[A2]−α

]
[
eθ[A2]−α−1

]2 ,

I23 = I32= −
∑D

i=1
(yi−τ)
τ+β(yi−τ)

+ θ
∑D

i=1

[
(τ+β(yi − τ))−α−1 (yi − τ)

[
1 − α log (τ+β(yi − τ))

]]
−

(n−D)θ(C−τ)[A2]−α−1
[
[1−α log(A2)]

(
eθ[A2]−α−1

)
−θα[A2]−α log[A2]eθ[A2]−α

]
[eθ[A2]−α−1]2

.
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Consequently, the ML estimators of Ψ = (θ, α, β ) have an asymptotic variance covariance matrix
defined by inverting the FIM and substituting θ̂, α̂ and β̂ respectively. Therefore, the two-sided ap-
proximate 100(1 − γ)% percent limits for the ML estimators of Ψ = (θ, α, β ) can be obtained as
follows:

Ψ̂k ± Zγ/2

√
Var(Ψ̂k), k = 1, 2, 3, (3.7)

where, zγ/2 is the standard normal percentile and var is the variance of Ψ̂ = (θ̂, α̂, β̂). Note that 95%
ACIs of θ, α, and β were calculated via the Newton-Raphson method.

3.2. Bootstrap confidence intervals

In this subsection, we propose to use bootstrap CIs. For this purpose, we generate parametric
bootstrap samples and obtained two different bootstrap CIs. Initially, we used Efron’s [21] percentile
bootstrap (boot-P) technique. Next, we looked at the bootstrap-t (boot-t) method, which is based on
Hall’s [23] methodology. These bootstrap CIs work as follows:

3.2.1. Boot-P method

1. Based on the UHCS, compute the ML and MPS estimates θ̂, α̂ and β̂

2. Generate random samples from proposed moedel, then generate a bootstrap unified hybrid cen-
sored sample.

3. Calculate bootstrap estimates θ̂, α̂ and β̂ say, θ̂∗, α̂∗ and β̂∗.

4. To get B bootstrap samples, repeat Steps 2-3 B several times.

5. Arrange all θ̂∗, α̂∗ and β̂∗ in ascending order as (θ̂∗[1]
k , θ̂

∗[2]
k ,...,α̂∗[B]

k ) (α̂∗[1]
k , α̂

∗[2]
k ,...,β̂∗[B]

k )
(β̂∗[1]

k , β̂
∗[2]
k ,...,β̂∗[B]

k )

6. Then, the 100(1 − γ)% Boot-P CI for Ψ = (θ, α β) is given by:

(Ψ̂∗k[Bγ/2], Ψ̂∗k[B1−γ/2]), k = 1, 2, 3. (3.8)

3.2.2. Boot-T method

1. Run the Boot-p method’s Steps 1 through 3 again.

2. Compute the t-statistic for parameter as: T ∗1 =
θ̂∗−θ̂√
Var(θ̂∗)

, T ∗2 =
α̂∗−α̂
√

Var(α̂∗)
, T ∗3 =

β̂∗−β̂√
Var(β̂∗)

3. Obtain Tk∗
(1),Tk∗

(2),..., T ∗k (B) where k = 1, 2, 3 after repeating Steps 1-2 B many times

4. Arrange all Tk∗
(1),Tk∗

(2),..., Tk∗
(B) in ascending order and denote Tk∗

[1],Tk∗
[2],..., Tk∗

[B].

5. Then, the 100(1 − γ)% Boot-t CI for Ψ = (θ, α, β) is given by:

(Ψ̂k − TL, Ψ̂k + TU), k = 1, 2, 3, (3.9)

where TL = Tk ∗
[B(γ/2)]

√
Var(Ψ̂k), and TU = Tk ∗

[B(1−γ/2)]
√

Var(Ψ̂k).
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4. Maximum Product of Spacing Estimator

Cheng and Amin [16] presented the MPS approach as an alternative to the ML method. In small
sample sizes, the MPS approach outperforms the ML method for heavy-tailed or skewed distributions.
The parameter values that maximize the product of the distances between the distribution function
values at neighboring ordered points are selected in order to evaluate the MPS estimators. This section
proposes the MPS procedure to provide the point estimates and ACIs for the IW distribution parameters
and acceleration factor under UCHS samples, assuming a SSPALT model. This novel approach extends
the applicability of the MPC method to this specific censoring scheme and lifetime model. The first-
order partial derivatives of Equation (3.1), with respect to θ, α, and β, are derived as follows:

M(Ψ) ∝
nu∏
i=1

[F1(yi; θ, α) − F1(yi−1; θ, α)]
D+1∏

i=nu+1

[F2(yi;Ψ) − F2(yi−1;Ψ)]

[1 − F2(C;Ψ)]n−D.

(4.1)

Thus,

M(Ψ) ∝
nu∏
i=1

[e−θy
−α
i − e−θy

−α
i−1]

D+1∏
i=nu+1

[e−θA
−α
1 − e−θA

−α
3 ]

[1 − e−θ[A2]−α]n−D; ,

(4.2)

where A3 =
[
τ+β(yi−1 − τ)

]
. The natural logarithm of Equation (4.2) is as follows:

lnM(Ψ) =
∑nu

i=1 log[e−θy
−α
i − e−θy

−α
i−1] +

∑D+1
i=nu+1 log[e−θA

−α
1 − e−θA

−α
3 ]

+ (n − D) log[1 − e−θ[A2]−α];.
(4.3)

The MPS estimators of θ, α and β, can be computed by differentiating Equation (4.3) with respect to θ,
α and β,

∂lnM(Ψ)
∂θ
=
∑nu

i=1
e−θy

−α
i y−αi−1−e−θy

−α
i−1 y−αi

e−θy
−α
i −e−θy

−α
i−1

+(n − D) e−θ[A2]−α [A2]−α

1−e−θ[A2]−α

+
∑D+1

i=nu+1
e−θA

−α
3 A−α3 −e−θA

−α
1 A−α1

e−θA
−α
1 −e−θA

−α
3
,

(4.4)

∂lnM(Ψ)
∂α
=
∑nu

i=1
θe−θy

−α
i y−αi log yi−θe

−θy−αi y−αi−1 log yi−1

e−θy
−α
i −e−θy

−α
i−1

−
(n−D)θe−θ[A2]−α log[A2]

1−e−θ[A2]−α ;

+
∑D+1

i=nu+1
θe−θA

−α
1 A−α1 logA1−θe

−θA−α3 logA3

e−θA
−α
1 −e−θA

−α
3

,
(4.5)

∂lnM(Ψ)
∂β
=
∑D+1

i=nu+1
θα(yi−τ)e

−θA−α1 A−α−1
1 −θα(yi−1−τ)e

−θA−α3 A−α−1
3

e−θA
−α
1 −e−θA

−α
3

− (n − D) θα(C−τ)e−θ[A2]−α [A2]−α−1

1−e−θ[A2]−α .
(4.6)

The nonlinear system of Equations (4.4), (4.5), and (4.5) is solved numerically using a nonlinear
optimization algorithm. By setting these equations to zero, we obtain the MPS estimators for θ, α and
β.
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5. Bayesian Estimation

This section focuses on Bayesian estimation and credible interval construction for the parameters
θ, α and β. Bayesian method has gained significant popularity for analyzing failure time data, as
they incorporate prior knowledge about the parameters and utilize the information provided by the
observed data. In this study, we employ a Bayesian approach to obtain point and interval estimators
for the unknown parameters and acceleration factor. Based on gamma priors for θ ∼ Gamma(a1, b1)
and α ∼ Gamma(a2, b2) and Jeffery prior density function for β(β ∝ 1/β), which are given by:

π1(θ) ∝ θa1−1e−θb1 , θ > 0, (5.1)

π2(α) ∝ αa2−1e−αb2 , α > 0, (5.2)

π3(β) ∝ 1/β, β > 1, (5.3)

where a1, b1, a2, and b2 are the hyper-parameters. The joint prior distribution for θ, α and β is given
by

π(Ψ) ∝
1
β
θa1−1αa2−1e−(θb1+αb2). (5.4)

The joint posterior density function of θ, α and β, denoted by π∗(Ψ|data), can be written as:

π∗(Ψ|data) =
L(Ψ)π(Ψ)∫ ∞

1

∫ ∞
0

∫ ∞
0

L(Ψ)π(Ψ)dθdαdβ
. (5.5)

The joint posterior of the parameters θ, α and β for the SSPALT under the assumption of the IW
distribution is given by combinning the likelihood function (3.1) and the joint prior density (5.4)

π (Ψ|data) ∝ e−(b1θ+b2α)θD+a1−1αD+a2−1βD−nu−1

nu∏
i=1

y−α−1
i e−θ

∑nu
i=1 y−αi

D∏
i=nu+1

[
τ+β(yi − τ)

]−α−1 e−θ
∑D

i=nu+1[τ+β(yi−τ)]−α[1 − e−θ[τ+β(C−τ)]
−α

]n−D.

(5.6)

Thus, under the squared error loss function (SELF), the Bayesian estimators θ̃, α̃ and β̃ of θ, α and β,
respectively, are obtained by minimizing the posterior expected loss. These estimators are equivalent
to the posterior means, which are given by:

θ̃ =

∫ ∞

0
θ π (Ψ|data) dθ, (5.7)

α̃ =

∫ ∞

0
α π(Ψ|data)dα, (5.8)

and,

β̃ =

∫ ∞

1
β π (Ψ|data) dβ. (5.9)

Since it is extremely difficult to calculate the integrals described in Equations (5.7), (5.8), and
(5.9) analytically, a numerical evaluation is performed using the Markov chain Monte Carlo (MCMC)
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method. Gibbs sampling and a more generic Metropolis within Gibbs samplers are important
subclasses of the MCMC method. Hastings [28] and Metropolis et al. [40] were the first to introduce
the MCMC approach. The two most widely used MCMC method variations are the Gibbs sampling
and the Metropolis-Hastings (MH) algorithm.

The conditional posterior distribution of parameters θ, α and acceleration β are given by:

π∗1(θ|α, β, data) ∝ θD+a1−1e−θ(b1+
∑nu

i=1 y−αi +
∑D

i=nu+1[τ+β(yi−τ)]−αe(n−D)log[1−e−θ[τ+β(C−τ)]
−α

], (5.10)

π∗2(α|θ, α, data) ∝ αD+a2−1e−(b2α+θ
∑n

i=1 y−αi )e−θ
∑D

i=nu+1[τ+β(yi−τ)]−α

e−(α+1)
∑D

i=nu+1 log[(τ+β(yi−τ)]]e(n−D)log[1−e−θ[τ+β(C−τ)]
−α

],
(5.11)

π∗3(β|θ, α, data) ∝ βD−nu−1e−(α+1)
∑D

i=nu+1 log[(τ+β(yi−τ)]]

e−θ
∑D

i=nu+1[τ+β(yi−τ)]−αe(n−D)log[1−e−θ[τ+β(C−τ)]
−α

].
(5.12)

It is clear that the full conditional distributions in Equations (5.10), (5.11), and (5.12) cannot be
reduced to any well-known distributions. Like acceptance-rejection sampling, the MH technique takes
into account the possibility that candidate values may be generated from a proposal distribution at each
algorithm iteration. The following procedures are used by the MH algorithm to create a series of draws
from this distribution:

1. Put the initial
(
Ψ

(0)
k

)
; where k = 1, 2, 3 satisfying the condition of π

(
Ψ

(0)
k

)
>0.

2. Using the initial value, sample a candidate point (Ψ∗)from proposal δ (Ψ∗) .

3. Given the candidate (Ψ∗), the acceptance probability is calculated by the following formula:

ηk = min

1, L
(
Ψ∗k|data

)
π
(
Ψ∗k

)
δ (Ψk)

L (data|Ψk) π (Ψk) δ
(
Ψ∗k

)  ; k = 1, 2, 3.

4. Draw a value of u from the uniform (0, 1) distribution; if u ≤ ηk accept Ψ∗k as Ψ( j)
k .

5. Otherwise, reject Ψ∗k and set Ψ( j)
k = Ψ

( j−1)
k .

6. To obtain j draws, we repeat steps 2-5 ( j + 1) times.

7. Obtain Bayes estimate (BE) for Ψk, using the SELF, given by;
∑J

j=1

(
Ψ

( j−1)
k

)
j

J .

8. Steps (1–7) have to be repeated k times to get BE of Ψk.

According to Hastings [28], the Bayes credible intervals (BCIs) of Ψ =; (θ, ;α,β) can be obtained
through the following steps:

1. Arrange Ψ( j)
k ; k = 1, 2, 3 as θ[1], θ[2], ..., ; θ[M], α[1], α[2], ..., α[M]and β[1], β[2], ..., ; β[M],where M de-

notes the length of the generated simulation.

2. The 100 (1 − γ) % BCIs of Ψ = (θ, α, β) are acquired as:(
Ψ

[M γ
2 ]

k ,Ψ
[M(1− γ2 )]
k

)
, k = 1, 2, 3.
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6. Simulation Studies

This section presents simulation results comparing the performance of classical estimates (ML,
MPS) and BEs under the UHCS with SSPALT. The BEs were obtained using gamma and uniform
priors under SELF. The primary challenge with the Bayesian approach was determining the poste-
rior distribution; deviations from the posterior density were simulated using the MH algorithm. The
simulation steps were as follows:

1. The true parameter values of (θ, α, β, τ), are selected as;
(θ = 1.5, α = 0.5, β = 2, τ = 3), (θ = 1.5, α = 0.5, β = 4, τ = 3)

2. Based on UHCS, select the sample size (failure items) and time at n = 50

k = 10, r = 25,T1 = 30,T2 = 40,
k = 15, r = 35,T1 = 30,T2 = 40,
k = 20, r = 45,T1 = 30,T2 = 40,
k = 25, r = 30,T1 = 20,T2 = 40,
k = 25, r = 45,T1 = 20,T2 = 40,
k = 30, r = 40,T1 = 15,T2 = 25,

and at n = 100;
k = 20, r = 50,T1 = 60,T2 = 80,
k = 30, r = 70,T1 = 60,T2 = 80,
k = 40, r = 90,T1 = 60,T2 = 80,
k = 50, r = 60,T1 = 40,T2 = 80,
k = 50, r = 90,T1 = 40,T2 = 80,
k = 60, r = 80,T1 = 30,T2 = 50,

3. The associated values of the hyper-parameters (a1, b1, a2, b2) were taken as (0.9, 1.7, 1.6, 1.5).

4. Using the SSPALT algorithm within UHCS, create 10,000 random samples of size n = 50, and
n = 100 from the IW distribution.

5. Calculate the ML estimates (MLEs), MPS estimates (MPSEs), as well as the associated ACIs
at a 95 % confidence level γ = 0.05. The BEs and associated credible intervals are at a 95%
confidence levelγ = 0.05.

6. To generate the posterior samples, using the ‘coda’ package, a total of 12,000 MCMC samples
were generated. The first 2,000 samples were discarded as burn-in. The subsequent 10,000
samples were utilized to calculate Bayes point and interval estimates for θ, α and β employing
ML methods.

7. The performance of the estimates is evaluated based on measures of accuracy, bias, mean squared
error (MSE), and CI length (L.CI). Simulation results are shown in Tables 3, 4, 5, 6, 7, 8.

The following conclusions can be constructed in considering the simulation results that were obtained:

1. For fixed values of n, k , r,T1, and T2, the MSE values of MLEs, MPSEs, and BEs decrease when
n increases.
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2. For fixed values of n, k , r,T1, and T2, the biases values of MLEs, MPSEs, and BEs decrease when
n increases.

3. For fixed values of n, k , r,T1, and T2, the length of CIs values for Boot-P, Boot-t, and BCI decrease
with increases values of n.

4. For the majority of parameter situations, for fixed values of θ, α and τ, the bias values of estimates
of θ and α decrease for ML, MPS and Bayesian estimation methods with β increases.

5. For the majority of parameter setting, the MSE values of θ and α estimates decrease for all esti-
mation methods with increasing values of β while keeping θ, α and τ fixed.

6. For most parameter settings, the length of CI values of θ and α estimates decrease for ML, MPS
and Bayesian estimation methods with an increasing value of β, given fixed values of θ, α and τ.

7. For all the UHCS, it is observed that the BEs perform better than classical methods (ML and
MPS) based on bias, MSE and length of CI.
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Figure 2. Empirical PDF, CDF, Q-Q plot,and P-P plot of IW distribution

7. Real Data Application

This section examines accelerated datasets to evaluate the performance of the proposed estimation
approaches. The data set was introduced by Bader and Priest [10] as the tensile strength measurements
on 1000 carbon fiber-impregnated tows at four different gauge lengths. The recorded data set is given
as follows:

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 1.966 1.997 2.006 2.021 2.027 2.055
2.063 2.098 2.140 2.179 2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 2.359 2.382 2.382 2.426
2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554 2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684
2.697 2.726 2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012 3.067 3.084 3.090 3.096
3.128 3.233 3.433 3.585 3.585

Using the Kolmogorov-Smirnov (K-S) goodness of the fit test. The estimated values of parameters
for first real data are; θ̂ = 5.434376, α̂ = 2.721414 and the K-S distance is determined to be 0.10015,
with an associated pvalue of 0.5524. Furthermore, multiple plots are analyzed for the goodness of fit
test to check further if the data fits the IW distribution. The empirical CDF, the histogram of the PDF,
probability-probability (P-P) plot, and quantile-quantile (Q-Q) plots are displayed in Figure 2. This
figure indicates that the IW distribution provides an adequate fit to the dataset.

Under SSPALT, we consider that the test runs under normal condition until the high stress is utilized,
and raised to make the test under accelerated condition. We assume that the stress change time τ is
2.360, and the normal and accelerated stress are provided in Table 9.

The SSPALT of the IW distribution under the UHCS with was taken into consideration based on
the real data. The accelerated factor and parameter estimates from ML, MPS, and Bayesian analysis
were computed. Six artificial UHCD sets are generated as follows:

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue 1, 162–185



180

Table 9. Real Data Selection under Different Conditions

Normal condition Accelerated condition

1.312 1.966 2.224 2.382 2.554 2.726 3.012

1.314 1.997 2.24 2.382 2.566 2.77 3.067

1.479 2.006 2.253 2.426 2.57 2.773 3.084

1.552 2.021 2.27 2.434 2.586 2.8 3.09

1.7 2.027 2.272 2.435 2.629 2.809 3.096

1.803 2.055 2.274 2.478 2.633 2.818 3.128

1.861 2.063 2.301 2.49 2.642 2.821 3.233

1.865 2.098 2.301 2.511 2.648 2.848 3.433

1.944 2.14 2.359 2.514 2.684 2.88 3.585

1.958 2.179 2.535 2.697 2.954 3.585

Case 1 : k = 20, r = 50,T1 = 3,T2 = 3.5, where,D = 59, c = T1 = 3,
Case 2 : k = 20, r = 50,T1 = 2.5,T2 = 3.5, where,D = 50, c = xr:n = 2.726,
Case 3 : k = 20, r = 65,T1 = 2.5,T2 = 3, where,D = 59, c = T2 = 2.954,
Case 4 : k = 20, r = 2.5,T1 = 1.5,T2 = 3, where D = 36, c = xr:n = 2.49,
Case 5 : k = 20, r = 60,T1 = 1.5,T2 = 2.7, where,D = 49, c = T2 = 2.7,
Case 6 : k = 55, r = 60,T1 = 1.5,T2 = 2.5, where, D = 55, c = xk:n = 2.818,

Figure 3. Iterations and Convergence of MCMC results for real data

Table 10 presented the standard errors (SEs) of MLEs, MPSEs and BEs for θ, α, and β. Given the
lack of prior knowledge, the hyperparameters a1, b1, a2, and b2 are set to be 0.001. Figure 3 illustrates
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the history plots, MCMC convergence diagnostics, and estimated marginal posterior densities for θ, α,
and β. Diagnostic plots indicate good convergence, as the generated posterior values closely match the
theoretical posterior density function. The MCMC chains exhibit stability, with no apparent trends or
significant autocorrelation.

Table 10. SSPALT-based estimates and standard errors for real UCHS data

k r T1 T2

ML MPS Bayesian

θ̂ α̂ β̂ θ̂ α̂ β̂ θ̂ α̂ β̂

Estimates
20 40 3 3.5

9.45 25.87 9.74 8.24 24.67 14.51 5.2 8.93 17.39

SE 5.035 4.907 5.280 4.962 4.865 5.090 4.656 4.723 6.403

Estimates
20 50 2.5 3.5

5.035 4.907 5.28 4.962 4.865 5.09 4.656 4.723 6.403

SE 4.960 4.890 5.232 4.855 4.849 5.080 4.636 4.671 6.034

Estimates
20 65 2.5 3

13.39 41.26 9.79 12.19 40.06 14.56 5.69 10.94 18.93

SE 5.177 5.074 5.457 4.834 4.800 5.030 4.617 4.651 5.331

Estimates
20 2.5 1.5 3

4.96 4.89 5.232 4.855 4.849 5.08 4.636 4.671 6.034

SE 5.155 5.042 5.361 4.813 4.780 5.000 4.616 4.634 5.095

Estimates
20 60 1.5 2.7

4.81 8.09 14.07 5.61 8.89 18.84 4.82 8.1 24.77

SE 5.012 4.876 5.206 4.857 4.842 5.070 4.615 4.629 5.075

Estimates
55 60 1.5 2.5

5.177 5.074 5.457 4.834 4.8 5.03 4.617 4.651 5.331

SE 4.931 4.861 5.178 4.849 4.826 5.150 4.603 4.623 5.067

8. Conclusions

The analysis of SSPALT based on UHCS data is investigated in this article when the testing prod-
ucts’ lifetimes have an IW distribution. The point and interval estimates for ML and MPS methods as
classical methods are provided. The approximate confidence intervals are provided using the asymp-
totic properties of the classical estimates. In addition, the Boot-p and Boot-t CIs for both methods are
provided. The point and the interval estimates for the Bayesian method is employed to obtain the un-
known parameters. By using the likelihood function, the joint posterior distribution is derived and the
Bayes estimates are calculated using the SELF. However,we employ MCMC techniques, specifically
the MH algorithm since the difficult nature of the Bayesian estimators and their corresponding BCIs.

Additionally, simulation studies were conducted to investigate the impact of acceleration factor (β)
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and sample size (n) on the accuracy of the estimators. The results indicate that the performance of
all estimation methods improves as both β and n increase. Overall, Bayesian estimation consistently
outperforms ML and MPS in terms of bias, MSE, and CI length. As the sample size increases, the CI
lengths for all estimates decrease. For smaller sample sizes, boot-p CIs tend to outperform boot-t CIs.
To prove the practicality of the techniques used in this work real data taken into consideration. Future
research could extend this study to explore the analysis of data under progressive UHCS or other more
complex censoring schemes, potentially involving varying distributions.
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