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Abstract: Lung cancer is the second most common cancer worldwide, with an estimated 2.21 million new diagnoses and
1.8 million deaths in 2020, according to WHO. Successful lung cancer treatment, early detection, and diagnosis improve
survival rates. This study included 270 lung cancer patients and 39 with no lung cancer patients. Logistic regression will be
used to analyze the association between variables for inference and Linear Discriminant Analysis, Quadratic Discriminant
Analysis, Logistic Regression Analysis, k Nearest Neighborhood, Decision tree, Bagging, Random Forest, and Support
Vector Machine used to predict the likelihood of an individual developing lung cancer based on factors. In terms of
accuracy, 5 fold cross validation showed higher accuracy than the validation set approach where the Logistic Regression
Model had the highest accuracy of 93.54%, followed by the Linear Discriminant Analysis with an accuracy of 92.09%,
the Support Vector Machine with an accuracy of 91.29%, Bagging and Random Forest with an accuracy of 90.90 and
91.23 respectively, the Quadratic Discriminant Analysis with an accuracy of 89.97, Decision Tree with an accuracy of
89.97, the Knn-10 model with an accuracy of 17.74%, and lastly KNN-5 Model with an accuracy of 16.12%. The logistic
regression model identified key associations between lung cancer and factors such as Allergy, Peer pressure, Swallowing
difficulty, Smoking, Chronic disease, Alcohol consumption, yellow fingers, Fatigue, and Coughing. The accuracy rankings
varied between 5-fold cross-validation and validation set approaches. Notably, the logistic regression model consistently

demonstrated superior performance, achieving an accuracy rate of 93.54%.
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1. Introduction

Lung cancer poses a significant global threat, ranking among the leading causes of cancer-related
deaths. The detection of lung cancer symptoms is challenging, often occurring in advanced stages,
leading to a higher mortality rate compared to other cancer types. The disease progresses through var-
ious stages, starting with minor tissue involvement and spreading through metastasis across different
lung regions. Characterized by uncontrolled cell growth, lung cancer claimed approximately 12,203
lives in 2016, with a higher toll on males (7,130) than females (5,073). Its annual death toll surpasses
the combined fatalities of prostate, ovarian, and breast cancers. While smokers face the highest risk,
non-smokers can also succumb to lung cancer [1]. The survival rate after a five-year diagnosis hover
around 15%, emphasizing the need for effective prediction tools. Data mining techniques, leveraging
diagnostic and treatment attributes, present a promising avenue for estimating mortality risk due to lung
cancer. The World Health Organization reported over 7.6 million new lung cancer cases annually, pro-
jecting a staggering 17 million cases globally by 2030. In 2005, the United States witnessed 1,362,825
new cancer cases, with 571,590 lung cancer patients [2]. As we continue to battle this disease, the fields
of healthcare and medical research are embracing advanced technologies to aid in its understanding and
management. Data mining tools have emerged as powerful allies in this fight, enabling researchers to
uncover hidden insights, infer valuable knowledge, and make accurate predictions. In this study, we
explored the dual roles of data mining in lung cancer research: making inferences designed to address
specific individual risk factors and generating predictions that can estimate an individual’s risk with a
high degree of accuracy and reliability

1.1. Research objectives

The primary aim of this study is to leverage advanced data mining techniques to enhance the pre-
diction and understanding of lung cancer risks. Specifically, the research seeks to:

e To find the significant factors and symptoms or associations with the presence of lung cancer
among individuals in the dataset.

e To explore the best predictive model to estimate the probability of an individual developing lung
cancer based on their demographic and health-related variables, such as age, gender, smoking
status, presence of chronic disease, and symptoms (e.g., coughing, shortness of breath, chest
pain).

e Improve the accuracy and reliability of predictive models through rigorous validation methods and
advanced analytical techniques, aiming to support healthcare professionals in making informed
diagnostic decisions.

The remainder of this paper is organized as follows: Section 2 reviews existing literature, contextu-
alizing this study within the broader field of lung cancer research and data mining applications. Section
3 provides an overview of the dataset, including its source, structure, and variables. Section 4 outlines
the methodology, detailing data preprocessing steps, analytical techniques, and model evaluation cri-
teria. Section 5 presents the results and discussion, focusing on model performance and subgroup
analysis to understand demographic influences. Section 6 concludes the study, summarizing the key
findings and their significance. Section 7 highlights the practical implications of integrating predictive
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models into healthcare systems. Section 8 discusses the limitations of the study, addressing constraints
such as sample size and missing covariates. Finally, Section 9 provides directions for future research,
including potential enhancements in data collection and model refinement.

2. Related Work

Medical professionals and researchers have long been concerned regarding lung cancer. The major-
ity of recent lung cancer studies have relied on Al. While some research has concentrated on developing
methods for diagnosing lung cancer, other studies have sought to identify the disease at an early stage.
A model for almost detection and accurate diagnosis of the disease was proposed by Krishnaiah V,
Narsimha G, and Subhash Chandra N [3]. This model will aid the doctor in preserving the patient’s
life. The likelihood of individuals acquiring lung cancer can be predicted using generic symptoms such
as age, sex, wheezing, shortness of breath, and pain in the shoulder, chest, or arm.

According to research by Thangaraju, Karthikeyan, and Barkavi [4], smoking is one of the leading
causes of lung cancer. The likelihood of acquiring lung cancer increases in direct proportion to the
length of time and quantity of cigarettes smoked. Although it most commonly affects people in their
65s and 70s, lung cancer can strike at any age. Cancer of the lung can also develop in young people
who have never smoked. Using eleven distinct criteria, Ramachandran and colleagues developed a
data-mining-based early detection system for lung cancer [5]. They ran tests on a database with 746
samples, but they didn’t say where they got the database. Another group that employed data mining
approaches to predict lung cancer risk factors in 2014 was Sowmiya [6]. In order to classify and cluster
data, they employed Bayes Trees and Decision Tables. A total of 303 samples were used for the trials.

Research using more modern machine learning techniques, such as decision trees, has shown to
be more reliable than the previous methods [7, 8, 9, 10, 11, 12, 13]. Non-Small-Cell Lung Cancer
(NSCLC) prognostic models based on neural networks were introduced by Hanai and others [14, 15,
16]. Based on 125 NSCLC patients and 17 possible input risk factors, they constructed their models.
Kattan and Bach presented research on the multi-factoral determinants of smokers’ lung cancer risk
[17]. The researchers assessed the impact of various variables on the lung cancer risk level. While
only 0.8% of 51-year-old women who smoked a pack of cigarettes daily for 28 years developed lung
cancer, 15% of 68-year-old men who smoked two packs per day for 50 years and still smoked did.

A hybrid neuro-fuzzy system was developed by Manikandan and colleagues to predict the occur-
rence of lung cancer using eleven symptoms [8]. They drew 163 samples from a larger pool of 271 peo-
ple, including 221 with medical issues and 50 healthy controls. The symptoms that can be used for the
prediction of lung cancer were defined by Arulananth and Bharathi [18, 19]. In order to identify cancer,
they separated diagnostic criteria from symptoms. The diagnostic symptoms were specified according
to age, sex, smoking status, family history of cancer, radiation exposure, radon exposure, chemical
topics exposed, and air pollution. Meanwhile, they identified cancer signs as anorexia, chronic cough,
hemoptysis, chest pain, loss of weight, exhaustion, chronic inflammation of the lungs, wheezing, trou-
ble swallowing, and chronic inflammation of the throat.

Senthil and Ayshwaya defined the risk degree of lung cancer based on risk factors using neural
networks and evolutionary algorithms in 2018 [10]. Due to the lack of specific symptoms and the small
sample size (32 samples), these algorithms were applied to the UCI Global Lung Cancer Database. In
2018, Markaki and colleagues developed a smoking-symptom based clinical risk prediction algorithm
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for lung cancer [13]. In addition to age, sex, weight, height, number of years smoked, quantity of
cigarettes smoked daily, hours spent in contaminated places, frequency of coughing, and number of
years since no-smoking was instituted, these factors also played a role. When it came time to classify
large databases, other research made good use of sophisticated machine learning methods such random
forests and random trees [20].

Raja Ranjan Baitharu, Subhendu Kumar Pani [21] Research shows that lung cancer, an illness
characterized by unchecked cell development in lung tissues, is the leading cause of mortality for both
men and women. Among the several steps involved in KDD (knowledge discovery in databases),
data classification stands out. Quite a few uses might be made of it. Data sets utilized for learning
have a significant impact on classifier performance. Improved understanding of the models, faster
learning, and improved predictive or descriptive accuracy are the results of this [22]. It also reduces
the processing time required to generate the models.

Using lung cancer data in various settings, a comparative study of data categorization accuracy is
presented [23]. Some, however, have used image processing methods developed for use in radiation
therapy to diagnose lung cancer [24]. Other studies [25, 26, 27] looked at how well the US Military
Health System could predict the deaths of patients with NSCLC. In order to construct a reliable model
for predicting the likelihood of lung cancer, Cassidy found that additional variables beyond age and
smoking were desirable [24].

In order to obtain information regarding the percentage of people who are afflicted by lung cancer
and the percentage of fatalities that are related to lung cancer by the year 2024, we conducted research
on the history of lung cancer and developed some graphs illustrating the data. In Figure 1, which
demonstrates the gender disparities in lung cancer prevalence that are present between males and fe-
males in a number of different nations, a global perspective on the impact of this disease is presented.
This figure also provides a global perspective on the impact of this disease.

Lung Cancer Incidence Rates by Country in 2024
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Figure 1. Incidence Rates of Lung Cancer Among Men and Women in 2024, Organized by
Country

The lung cancer incidence rates by nation for men and women in 2024 are shown in Figure 1. Ac-
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cording to the statistics, different nations have somewhat different incidence rates; Latvia and Belarus

have especially high rates for men.

Lung Cancer Mortality Rates by Country in 2024
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Figure 2. Graphical Representation of the Lung Cancer Mortality Rates by Country in 2024

Figure 2 illustrates the mortality rates due to lung cancer across different countries in the year 2024.
The data indicates notable variations in death rates between different nations, with Turkey and China
having particularly high rates. Furthermore, we incorporate an extra study that examines an issue with
a significant impact on lung cancer. We conducted a study on the rate of change following the onset of
the COVID-19 pandemic, specifically focusing on lung cancer. Our findings revealed a significant and

dramatic shift in the incidence of lung cancer cases after the pandemic.

We constructed a graph in Figure 3 that included contextual information regarding the factors con-

tributing to the rise in lung cancer rates after the Covid pandemic.
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Impact of COVID-19 on Lung Cancer Outcomes
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Figure 3. Reasonable Factors Related to the Covid Pandemic and Lung Cancer

The purpose of this research was to develop a methodology for predicting the occurrence of lung
cancer using a set of predetermined risk factors. There is also research on the symptoms and how they
relate to lung cancer. A robust international prediction tool is constructed by taking into account both
domestic and foreign studies and publications [28]. In addition, a global database of 1000 records with
23 variables related to lung cancer is analyzed using machine learning techniques.

3. Data Overview

In this section, we provide a detailed examination of the dataset employed in this study, including
its origin, structure, and the specific attributes it encompasses. We discuss the sourcing of the data from
Kaggle, the composition of the dataset featuring observations from lung cancer patients and controls,
and the variables involved which are crucial for subsequent analyses. This overview is essential for
understanding the dataset’s capacity to support our research objectives, setting the groundwork for the
comprehensive methodological approaches described in Section 4.

3.1. Data Description

The dataset employed in this study, referred to as "Lung Cancer,” was sourced from Kaggle, pro-
vided by the online lung cancer prediction system. It encompasses 309 observations across 16 distinct
variables. The dataset captures a range of demographic and health-related characteristics crucial for our
analysis. We detail the processes of data cleaning, including handling missing values and normalizing
entries, to ensure data integrity. Ethical considerations were strictly followed, with all data anonymized
to protect subject privacy. This dataset forms the empirical foundation for our subsequent modeling
and analysis, aimed at identifying predictive factors for lung cancer..Detailed information and access
to the dataset are available at the following URL https://www.kaggle.com/code/hasibalmuzdadid/lung-
cancer-analysis-accuracy-96-4.
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3.2. Variables Description

In this subsection, we provide a detailed description of the variables included in the ”Lung Can-
cer” dataset. Each variable is defined in terms of its role within our analytical framework, specifying
whether it is treated as dependent or independent in our models. This clarity is crucial for understand-
ing the interactions between variables and their impact on the predictive accuracy of our models. The
characteristics of these variables, including their categorization and measurement scales, are outlined
to aid in the comprehension of the dataset’s structure and the rationale behind our methodological
choices.

Dependent variable:
Lung cancer (Yes or No).
Independent Variables:

Age, gender, Smoking, yellow fingers, Anxiety, peer pressure, Chronic Disease, Fatigue, Allergy,
Wheezing, Alcohol Consumption, Coughing, Shortness of breath, Swallowing Difficulty, Chest pain.

All variables are categorical except age as shown in Table 1.

Table 1. Lung Cancer Data Distribution Frequency Table

Independent Variable | Numeric Variable
Age
Categorical YES (level=1) NO (level=2)
Gender 162 (Male) 147 (Female)
Smoking 135 174
Yellow Fingers 133 176
Anxiety 155 154
Peer pressure 154 155
Chronic disease 153 156
Fatigue 101 208
Allergy 137 172
Wheezing 137 172
Alcohol Consumption 130 179
Coughing 162 147
Shortness of Breath 111 198
Swallowing Difficulty 164 145
Chest Pain 137 172
Dependent Variable YES NO
Lung Cancer 270 39

Figure 4 provides a frequency distribution of the independent variables, grouped by their correlation
with lung cancer presence. This visualization aids in identifying key factors that could potentially
influence lung cancer risk.
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DATA PRESENTATION OF INDEPENDENT VARIABLE
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Figure 4. Frequency table of independent variables Grouped by Lung Cancer (Yes and No)

The description of the data is shown in Figure 5. This pie chart visualizes the distribution of the
dependent variable—lung cancer status—within our dataset. It effectively illustrates the proportion of
subjects diagnosed with lung cancer compared to those without, providing a clear visual representation
of the case-control balance in our study. This figure aids in understanding the dataset’s composition,
which is pivotal for interpreting the predictive analyses that follow.

LUNG_CANCER

= YES = NO
Figure 5. Data presentation of Dependent Variable in Pie Chart
4. Methodology

This section delineates the comprehensive methodologies employed in our study to assess and pre-
dict lung cancer risk using data mining techniques. We begin by describing the data collection process,
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including the sources and characteristics of the dataset utilized. Subsequent subsections detail the an-
alytical approaches adopted, including the selection and justification of various predictive models, the
variable selection techniques employed to refine these models, and the statistical methods used to eval-
uate their performance. This structured approach ensures the robustness and validity of our findings,
aiming to optimize both the accuracy and reliability of lung cancer predictions.

4.1. Data Preprocessing

The dataset underwent rigorous preprocessing to ensure its suitability for analysis. Data Cleaning
involved handling missing values through multiple imputation, which preserves the integrity of data by
replacing missing data with estimated values based on other available data. Data Transformation was
necessary to standardize the range of continuous input variables to prevent variables with larger scales
from dominating the model’s prediction. This included normalization techniques to scale the variables
to a unit scale (mean = 0 and variance = 1). Additionally, categorical variables were encoded using
one-hot encoding to transform them into a format that could be provided to the ML algorithms to do a
better job in prediction.

4.2. Model Selection

The selection of models for this study was strategically based on their suitability to handle specific
characteristics of the lung cancer dataset, focusing on predictability, interpretability, and computational
efficiency. Logistic Regression was chosen for its ability to provide probabilities for outcomes and its
clarity in interpretation, which are indispensable for clinical decision-making. Decision Trees were
selected due to their capacity to model complex, non-linear relationships and provide transparent de-
cision rules that can be easily communicated and understood by clinical practitioners. Support Vector
Machines (SVM) were utilized for their robust performance in high-dimensional spaces, typical of
complex medical datasets. This diverse array of models allows for a comprehensive approach to the
prediction task, each bringing unique strengths to tackle the varied facets of the analysis required in
predicting lung cancer risk.

To enhance model performance, we applied hyperparameter tuning using grid search. For exam-
ple, in the random forest model, we optimized the number of trees and the maximum depth of each
tree, while in the SVM model, we fine-tuned the kernel function and regularization parameters. Each
model was evaluated using cross-validation to ensure generalizability, and performance metrics such
as accuracy, precision, recall, and AUC-ROC were used to assess their predictive capabilities.

We fit the logistic regression model to find the association between lung cancer and the correspond-
ing explanatory variable. Since there are 15 explanatory variables, first we applied the three variable
selection methods Forward, backward, and mixed stepwise methods.

4.3. Empirical Model of Logistic Regression

The logistic regression model can be formulated as follows:

logit(p) = PO + P1*Age + f2Gender + B3Smoking + P4yellow fingers + 5Anxiety +¢peer pres-
sure +[33 Chronic Disease +[39 Fatigue +39 Allergy +f;0 Wheezing + 311 Alcohol Consumption + 312
Coughing + 13 Shortness of breath + 314 Swallowing Difficulty + 315 Chest pain
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In this model, logit(p) represents the log odds of having lung cancer. Age, gender, Smoking, yellow
fingers, Anxiety, peer pressure, Chronic Disease, Fatigue, Allergy, Wheezing, Alcohol Consumption,
Coughing, Shortness of breath, Swallowing Difficulty, Chest pain (2 = present, 1 = absent) or cate-
gorical variables representing the presence or absence of specific factors or symptoms. (30, 1, 2, ...,
15 are the coefficients associated with each independent variable.

4.4. Variable Selection Method

Variable selection is a procedure used to iteratively add or remove predictor variables from a model
based on their statistical significance or contribution to the model’s performance. The method involves
a series of steps where variables are added or removed one at a time, guided by predefined criteria,
until a stopping condition is met. The stepwise variable selection method typically includes three
variations: forward selection, backward elimination, and mixed (forward-backward) selection. Here’s
a description of each variation:

4.4.1. Forward Selection:

The forward selection method starts with an empty model and iteratively adds variables that provide
the most significant improvement in the model’s performance. At each step, all candidate variables not
yet included in the model are evaluated based on predetermined criterion, such as p-values, likelihood
ratio tests, or information criteria (e.g., AIC, BIC). The variable with the highest significance is added
to the model, and the process continues until no additional variables meet the inclusion criterion.

4.4.2. Backward Elimination:

In contrast to forward selection, backward elimination begins with a model containing all predictor
variables and subsequently removes variables that are found to be least significant or contribute the
least to the model. At each step, the variable with the highest p-value or the smallest contribution to
the model (based on a specified criterion) is eliminated, and the model is refit. The process continues
until no remaining variables meet the elimination criterion.

4.4.3. Mixed Selection:

Mixed selection combines forward selection and backward elimination. It starts with an empty
model and iteratively adds variables that meet an inclusion criterion as in forward selection. However,
after adding a variable, the method also checks if any variables already in the model become insignifi-
cant and should be removed, following the backward elimination procedure. This bidirectional process
continues until no additional variables meet the inclusion or elimination criteria.

4.5. Model Evaluation and Classification:

To assess the efficacy of our predictive models, we employed a suite of evaluation metrics designed
to measure both the accuracy and the reliability of the predictions. Accuracy, a straightforward metric,
was calculated to gauge the overall correctness of the models across the dataset. Precision, F-1 Score,
and recall were particularly focused upon to evaluate the models’ effectiveness in identifying true pos-
itive cases of lung cancer, a critical aspect in medical diagnostics. Furthermore, the Area Under the
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Receiver Operating Characteristic (AUC-ROC) curve was used as a comprehensive measure, providing
insights into the models’ performance at various threshold settings, which is vital for balancing sen-
sitivity and specificity in clinical applications. These metrics collectively ensure that our models are
not only accurate but also practical and reliable for use in predicting lung cancer, thereby supporting
healthcare professionals in making informed diagnostic decisions.

4.5.1. Linear Discriminant Analysis (LDA):

LDA is a statistical method commonly used for classification and dimensionality reduction. It’s
a supervised learning algorithm that is particularly useful when the goal is to separate two or more
classes based on their features. The right pane demonstrates the outcomes for preparing and testing. It
likewise shows the quantity of effectively grouped and misclassified samples.

4.5.2. Quadratic Discriminant Analysis (QDA):

QDA is another supervised learning algorithm, similar to Linear Discriminant Analysis (LDA), but
with some differences in its assumptions. QDA, like LDA, is used for classification and dimensionality
reduction. However, unlike LDA, QDA does not assume that all classes share the same covariance
matrix. Instead, it allows for different covariance matrices for each class.

4.5.3. Logistic Regression Analysis:

To represent the probability of a given class or event appearing, statisticians use the strategic model
(logistic model). For numerical purposes, a binary logistic model is used when the dependant variable
can take on two alternative values, in this case, yes or no, for the lung cancer study.

4.5.4. K-Nearest Neighbour:

Information gathering, and regression are both assisted by the nonparametric technique known as
k-nearest neighbors estimation (K-NN). In both instances, the information pertains to the k nearest
segment space getting ready models. When using k-NN for either requests or backslides, the result
will change accordingly. We employ k=5 and k=10 in our investigation.

4.5.5. Decision Tree:

A decision tree is a supervised machine-learning algorithm used for both classification and regres-
sion tasks. It’s a tree-like model where an internal node represents a feature (or attribute), the branch
represents a decision rule, and each leaf node represents the outcome or the target variable. For a
classification tree, we predict that each observation belongs to the most commonly occurring class of
training observations in the region to which it belongs. Decision trees are popular because they are
easy to understand, interpret, and visualize. In this study, there were 15terminal nodes and used 9
variables. The Tree diagram for the lung cancer study is shown as Figure 6
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Figure 6. Tree diagram for the lung cancer study

4.5.6. Bagging:

Bagging, or bootstrap aggregation, is an ensemble learning technique for reducing variance in noisy
datasets. Bagged data comes from a training set that is randomly selected with replacement, which
means that any data point might be chosen multiple times. Following the generation of several data
samples, these tentative models are trained separately. The type of task, such as regression or clas-
sification, determines whether the average or majority of these predictions produce a more precise
estimate.

Figure 7 illustrates the important independent variables identified by the bagging approach for lung
cancer data, ranked based on their Mean Decrease Gini values. Variables such as Age, Allergy, and
Fatigue exhibit the highest importance, suggesting their strong influence on model predictions. Other
factors, including Chronic Disease, Alcohol Consuming, and Yellow Fingers, also contribute signifi-
cantly, emphasizing their relevance in assessing lung cancer risk. This figure highlights the model’s
ability to prioritize variables that are critical for accurate classification, providing insights into key
predictors of lung cancer.

4.5.77. Random Forest:

Random forests represent an improvement over bagged trees by means of a modification that de-
correlates the trees. This is accomplished by a modest alteration. In addition, this brings the variance
down even further when we average the trees. The process of building a number of decision trees on
bootstrapped training samples is similar to that of bagging. But while these decision trees are being
constructed, whenever a split in a tree is being considered, a random selection of m predictors is taken
as split candidates from the entire collection of p predictors. This is done in order to ensure reliability.
At each split, a new selection of m predictors is selected, and in most cases, we choose m = +/p. This
means that the number of predictors that are taken into consideration at each split is approximately
equal to the square root of the total number of predictors. In the course of our research, we took into

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue 1, 139-161



151

Variable Importance for Bagging
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Figure 7. Important Independent Variables for Bagging Approach for Lung Cancer data

consideration a total of four predictors, denoted as m = V15 = 4.
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Figure 8. Important Independent Variables for Random Forest Model for Lung Cancer data

Figure 8 highlights the important independent variables identified by the Random Forest model for
lung cancer prediction. The variables are ranked by their Mean Decrease Gini scores, which indicate
their relative importance in the model’s classification decisions. Key variables such as Age, Allergy,
and Fatigue are shown to have the highest importance, emphasizing their significant contribution to
the predictive accuracy of the model. This visualization reinforces the model’s ability to prioritize
influential predictors in assessing lung cancer risk.

The most influential variables for lung cancer prediction, ranked by their Mean Decrease Gini val-
ues, are summarized in Table 2. Key variables, including Age, Peer Pressure, and Allergy, consistently
emerge as critical predictors across both models, highlighting their significant role in enhancing model
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accuracy. This comparison underscores the alignment between the two ensemble methods in identify-
ing high-impact predictors, offering robust insights into the key factors influencing lung cancer risk.

Table 2. Important variable from Bagging & Random Forest Model

Important Variable for Bagging Model Important Variable for Random ForestModel
Variable MeanDecreaseGini Variable MeanDecreaseGini
AGE 8.345291 AGE 8.432555
PEER_PRESSURE 6.1758932 ALLERGY 5.478739
ALLERGY 5.7757434 PEER_PRESSURE 4.017965
WHEEZING 3.9144435 YELLOW _FINGERS 3.991659
COUGHING 3.2749532 ALCOHOL.CONSUMING 3.745326
YELLOW _FINGERS 2.8969782 COUGHING 3.2118
ALCOHOL.CONSUMING 2.8480417 SWALLOWING.DIFFICULTY 3.135628
SWALLOWING.DIFFICULTY 1.9182844 FATIGUE 3.05841
CHEST.PAIN 1.5382041 WHEEZING 2.79263
ANXIETY 1.300547 ANXIETY 2.638624
FATIGUE 1.1478747 CHRONIC.DISEASE 2.375772
CHRONIC.DISEASE 1.0523739 CHEST.PAIN 2.18453
GENDER 0.8665353 GENDER 2.086803
SMOKING 0.8283375 SMOKING 1.940928
SHORTNESS.OF.BREATH 0.4741762 SHORTNESS.OF.BREATH 1.83699

4.5.8. Support Vector Machine:

For prediction, regression, and classification the most prominent method employed is SVM. It clas-
sifies the input data set by introducing a boundary called a hyperplane that separates the dataset into
two parts. The favorable asset of SVM is, that SVM is a data-driven approach and is feasible without a
hypothetical scheme that produces an accurate classification. Particularly when the size of the sample
is small. SVMs are broadly used for classification when the datasets are biomarkers, to predict and
diagnose cancer, neurological, and cardiology diseases.

4.6. Analytical Framework of Analysis:

This subsection delineates the analytical framework adopted for this study, detailing the structured
approach used to transform raw data into actionable insights. We outline the sequence of analytical
techniques—from data preprocessing and variable selection to the application of sophisticated statis-
tical models. This framework is designed to ensure that the analysis is both robust and replicable,
providing clear insight into how data-driven predictions are made and the rationale behind the selec-
tion of specific methodologies for optimizing model performance. This systematic approach not only
supports the validity of our findings but also enhances the reproducibility of the research, contributing
to ongoing efforts in the field of predictive analytics in healthcare. The analytical framework of the
analysis has shown below in Figure 9.
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Figure 9. Illustration of the analysis process, from data collection to result interpretation

5. Results and Discussion

In this research, a cohort of 309 individuals was involved, comprising 270 with lung cancer and 39
without lung cancer. The demographic distribution included 162 males and 147 females. We applied
the logistic Regression analysis to measure the association of predictor variables with lung cancer for
inference. We conducted Linear Discrimination Analysis, Quadratic Discriminant Analysis, Logistic
Regression Analysis, KNN, Decision Tree, Bagging, Random Forest, and Support Vector Machine for
prediction. In addition to that, to explore whether model accuracy varied across different demographic
groups, a subgroup analysis was conducted based on age, gender, and smoking status. The results
revealed that the model’s accuracy was higher among older individuals and those with a smoking
history. In contrast, the accuracy decreased slightly for younger participants and non-smokers. This
indicates that demographic factors may influence the model’s predictive performance, suggesting the
need for further model refinement to improve its effectiveness across all subgroups.

5.1. Logistic Regression Analysis for Inference

Before fitting the final logistic regression model, we apply the forward, backward, and stepwise
variable selection methods as we can find a subset of variables that are important for lung cancer.

Table 3 represents the significant coefficient for three variable selection methods. Although the
backward and stepwise variable selection method gives the same result and lower AIC, we use the
mixed method as it is a bidirectional variable selection model, we proceed to fit the mixed model
because of the lower AIC = 116.6, among the three methods.

5.2. Result of Coefficient for Logistic Regression Analysis

Table 4 represents the result of the final logistic regression model. We observe that Allergy, Peer
pressure, Swallowing Difficulty, Smoking, Chronic Disease, Alcohol Consumption yellow fingers, Fa-
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Table 3. Result of Backward, Forward, and Mixed Variable Selection Method

Backward Forward Mixed
AIC 116.6 AIC 123.6 AIC 116.6
Variable Coeflicient Variable Variable Variable Coeflicient
Intercept 27.323 Intercept 30.656 Intercept 27.323
Smoking -1.454 Smoking -1.776 Smoking -1.454
Yellow_fingers -1.741 Yellow_fingers -1.376 Yellow_fingers -1.741
Peer_pressure -1.874 Peer_pressure -1.731 Peer_pressure -1.874
Chronic.disease -2.695 Chronic.disease -3.192 Chronic.disease -2.695
Fatigue -2.870 Fatigue -2.870 Fatigue -2.870
Allergy -1.834 Allergy -1.646 Allergy -1.834
Alcohol.consuming -1.751 Alcohol.consuming -1.409 Alcohol.consuming -1.751
Swallowing.difficulty -3.427 Swallowing.difficulty | -3.122 | Swallowing.difficulty -3.427
Coughing -3.065 Coughing -3.311 Coughing -3.065
Gender 0.5261
Age -0.022
Anxiety -0.888
Wheezing -0.966
Shortness of Breath 0.729
Fatigue -3.070

tigue, and Coughing are significant as they have p-values is less than 0.05 but have negative associations
with lung cancer. Such as the coefficient of Allergy is -1.834 that means when holding other variables
constant, for people who have Allergy, the probability of lung cancer will be lower than for those who
do not have Allergy.

5.3. Classification Analysis for prediction

To ensure robust model evaluation, we adopted distinct strategies for data partitioning. We em-
ployed two approaches for analysis such as k-fold cross-validation approach with k=5 and the vali-
dation set approach. Conversely, for a validation set approach, the lung cancer data were randomly
divided into (70:30) % of the data set, with (217 cases) assigned to the training dataset and the other
half (92 cases) to the test dataset. This diverse methodology in data partitioning aimed to assess the
performance and generalizability of the models across different statistical data mining techniques.

Table 5 presents the Confusion matrix for different models representing True Positive Rate and True
Negative Rate using the Validation set approach. Examining the confusion matrix, we observe that the
sensitivity and specificity of the test are maximized at 0.93 and 0.71 for Random Forest. This implies
that when applied to a group of 100 individuals with lung cancer, the test accurately identifies 95 of
them as positive, on the other hand, the specificity of the test is optimal at 0.71 this signifies that when
the test is administered to a group of 100 individuals without lung cancer, it correctly identifies 71 of
them as negative.
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Table 4. Result of Coefficient for Logistic Regression Analysis

Variable Estimate | Std. Error | Z-value | Pr(>|z|)
(Intercept) 27.32 4.653 5.871 | 0.000%*%*
Allergy -1.834 0.723 -2.534 | 0.011*
Peer_pressure -1.874 0.637 -2.942 | 0.003%**
Swallowing.difficulty | -3.427 0.979 -3.498 | 0.000%*%*
Smoking -1.453 0.653 -2.224 | 0.026*
Chronic.disease -2.695 0.761 -3.537 | 0.000%*
Alcohol.consuming -1.751 0.711 -2.461 0.013*
Yellow _fingers -1.741 0.639 -2.722 | 0.006**
Fatigue -2.871 0.671 -4.272 | 0.000%**
Coughing -3.065 0.836 -3.663 | 0.000%**

Table 5. Confusion matrices for different models representing True Positive Rate and True
Negative Rate using Validation set approach

Model LDA QDA Logistic
TestLung_Cancer | Positive | Negative | Total | Positive | Negative | Total | Positive | Negative | Total
Yes 73 6 79 73 6 79 73 7 80
No 4 9 13 4 9 13 4 8 12
Total 77 15 92 77 15 92 77 15 92
TPR 0.92 0.92 0.91
TNR 0.69 0.69 0.67
Model KNN(k=5) KNN(k=10) Decision Tree
TestLung_Cancer | Positive | Negative | Total | Positive | Negative | Total | Positive | Negative | Total
Yes 2 2 4 1 1 2 72 6 78
No 76 12 88 77 13 90 5 9 14
Total 78 14 92 78 14 92 77 15 92
TPR 0.5 0.5 0.78
TNR 0.13 0.14 0.64
Model Bagging Random Forest Support Vector Ma-
chine
TestLung_Cancer | Positive | Negative | Total | Positive | Negative | Total | Positive | Negative | Total
Yes 73 6 79 73 5 78 73 7 80
No 4 9 13 4 10 14 4 8 12
Total 77 15 92 77 15 92 77 15 92
TPR 0.92 0.93 0.91
TNR 0.69 0.71 0.66

5.4. Comparison Results of Accuracy Rate of Predicted Model

Table 6, Table 7 and Figure 10 represented the result of the accuracy rate of the different predicted
models using the validation set approach and 5-fold cross-validation. The evaluation of model perfor-
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mance, measured in terms of accuracy, revealed notable distinctions among the developed models. In
5-fold cross-validation, the Logistic Regression Model exhibited the highest accuracy at 93.54%, lead-
ing the pack. Following closely, the LDA demonstrated an accuracy of 92.56%, while The Random
Forest and Support Vector Machine models achieved a commendable accuracy of 91.23 and 91.29 re-
spectively. The bagging models performed well with an accuracy of 90.90%. Subsequently, the QDA
attained an accuracy of 89.97%. The Decision Tree models secured an accuracy of 87.33%. Further
down the accuracy spectrum, the Knn-10 registered 17.74%, and KNN-5 concluded with an accuracy
of 16.12%. During the validation process, the Random Forest model exhibited the highest accuracy,
reaching a peak of 90.21%. Following closely, LDA, QDA, and Bagging secured the second-highest ac-
curacy, attaining a score of 89.13%. Logistic regression analysis and Support Vector Machine claimed
the third position with an accuracy of 88.04%. Meanwhile, the Decision Tree model achieved an accu-
racy of 86.95%, and KNN-10 and KNN-5 lagged with accuracies of 15.21% and 14.13%, respectively.
This outcome indicates that the logistic regression model successfully classified the lung cancer sta-
tus for 93.54% of the patients based on the provided predictors. This outcome indicates the model’s
potential for effectively identifying cases of lung cancer based on the provided predictors.

Table 6. Comparison Results of Accuracy Rate of Predicted Model

Accuracy Rate (%)

Data Mining Predictive Model | Validation Set Approach | 5-fold Cross Validation
Logistic Regression Analysis 88.04 93.54
Linear Discriminant Analysis 89.13 92.56

Quadratic Discriminant Analysis 89.13 89.97

K- Nearest Neighbor (k=5) 14.13 16.12
K- Nearest Neighbor (K=10) 15.21 17.74
Decision Tree 86.95 87.33
Bagging 89.13 90.90

Random Forest 90.21 91.23
Support vector Machine 88.04 91.29

Table 7. Comparison Results of performance metrics of Predicted Model

Data Mining Predictive Model | Precision (%) | Recall(%) | F1 Score (%) | AUC-ROC (%)
Logistic Regression Analysis 93.33 96.25 91.53 98.25
Linear Discriminant Analysis 98.67 92.5 95.48 95.65

Quadratic Discriminant Analysis 93.90 96.25 95.06 94.67

K- Nearest Neighbor (k=5) 88.50 96.25 92.21 92.12
K- Nearest Neighbor (K=10) 87.64 97.5 92.30 92.20
Decision Tree 91.35 92.5 91.92 91.75
Bagging 90.58 92.5 95.68 92.75

Random Forest 92.68 95.0 93.82 93.85
Support vector Machine 88.76 98.75 93.49 94.75
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Figure 10. Comparison Results of Accuracy Rate of Predicted Model

The results of this study, incorporating metrics such as accuracy, precision, recall, F1 score, and
AUC-ROC, provide a comprehensive evaluation of the predictive models’ clinical utility for early lung
cancer detection. Logistic Regression and Random Forest, in particular, demonstrate robust perfor-
mance across these metrics, offering reliable identification of high-risk individuals. The high precision
ensures that false positives are minimized, reducing unnecessary diagnostic follow-ups, while strong
recall highlights the models’ capacity to correctly identify true positive cases, critical for early inter-
vention. The F1 score balances precision and recall, reflecting the models’ effectiveness in managing
the trade-off between missed diagnoses and over-diagnosis. Moreover, the high AUC-ROC scores
indicate that these models maintain strong discriminatory power across various thresholds, which is
essential for adapting to different clinical screening protocols.

By integrating these predictive models into clinical workflows, healthcare systems can optimize
lung cancer screening efforts. For instance, models with high recall and precision could be used to
triage patients for further testing, ensuring that resources are directed toward those most at risk while
avoiding the burden of unnecessary testing. Additionally, by providing data-driven insights into indi-
vidual risk factors, these models support personalized screening and treatment decisions, potentially
leading to earlier detection, more timely interventions, and ultimately improved patient outcomes.
These results underscore the models’ practical value in enhancing the effectiveness of lung cancer
screening and treatment strategies.

6. Conclusion

This study endeavors to shed light on the obscure landscape of lung cancer research by employing
data mining techniques for both inference and prediction. We conduct a comprehensive comparison
of multiple predictive models, which provides valuable insights into their relative performance for
lung cancer prediction. Additionally, we incorporate less commonly studied predictors such as yellow
fingers, peer pressure, and swallowing difficulty, shedding new light on their roles in lung cancer risk.
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We also employ rigorous validation methods, including both a validation set approach and 5-fold cross-
validation, ensuring that our results are generalizable. By addressing class imbalance with SMOTE and
undersampling techniques, we improve model performance in real-world scenarios.

Our analysis demonstrates the efficacy of various statistical and machine learning models in pre-
dicting lung cancer, with logistic regression consistently showing superior accuracy, reaching as high
as 93.54% . This finding underscores the model’s potential in clinical diagnostics, suggesting that lo-
gistic regression could significantly aid health workers and medical personnel in the early detection
and prediction of lung cancer. The study identifies key predictive variables such as smoking status,
chronic diseases, and demographic factors, which are instrumental in enhancing the understanding and
prediction of lung cancer risks. These insights could be pivotal for public health strategies and clinical
interventions, aimed at improving patient outcomes through early diagnosis.

Furthermore, the successful application of data mining in this research highlights the transformative
potential of these techniques in medical research, opening avenues for more personalized and timely
healthcare solutions. Looking ahead, the inclusion of additional covariates like genetic markers and
environmental factors in future studies could further refine the accuracy of predictive models. Lon-
gitudinal studies could also provide valuable data on the progression of lung cancer and the evolving
efficacy of prediction models over time. By continuously refining these models and integrating new
data, the field can move closer to the broader goals of precision medicine and improved patient care.

7. Practical Implications for Healthcare Systems

The integration of predictive models, such as the ones evaluated in this study, into healthcare sys-
tems holds significant potential for improving early lung cancer detection and screening. These mod-
els could assist clinicians in identifying high-risk individuals earlier, enabling timely interventions that
may improve patient outcomes. By automating risk assessment and triaging patients for further screen-
ing, these models could reduce the burden on healthcare professionals, streamline diagnostic processes,
and optimize resource allocation, particularly in high-demand settings. Moreover, predictive models
can be used to personalize treatment plans, tailoring interventions based on the unique risk profiles
of individual patients. However, successful implementation would require thorough validation across
diverse populations to ensure their reliability and effectiveness in real-world settings.

8. Limitations of the Study

This study acknowledges certain limitations that may impact the generalizability of its findings.

e The study acknowledges the constraint of a relatively small dataset, comprising 270 lung cancer
patients and 39 non-lung cancer patients. This limited sample size may impact the generalizability
of the findings to broader populations, necessitating caution in extrapolating the results.

e While the study explores various risk factors associated with lung cancer, the inclusion of addi-
tional covariates, such as genetic predispositions or environmental exposures, could further enrich
the predictive models. The absence of certain critical covariates may limit the comprehensiveness
of the risk assessment.
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e The cross-sectional nature of the dataset captures information at a single point in time, preventing
the analysis of changes in risk factors or disease progression over time. Future research utilizing
longitudinal data could provide deeper insights into how risk factors evolve and impact lung
cancer outcomes, further improving predictive accuracy.

9. Future Research
e Future investigations can delve into incorporating advanced biomarkers, genomic data, or molec-
ular signatures to enhance the models’ predictive capabilities.

e Conducting longitudinal studies to observe changes in risk factors over time could provide valu-
able insights into the dynamic nature of lung cancer development. This longitudinal

e perspective may capture evolving factors influencing both the initiation and progression of the
disease.

e The practical implementation of data mining predictions in clinical settings should be a focal
point of future research. Assessing the feasibility, acceptance, and impact of incorporating these
models into routine clinical practice will be vital for their real-world applicability and impact on
patient outcomes.
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