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1. Introduction

Joint modelling has become a pervasive approach in analysing clinical data involving simultaneous
observation of time to event outcome and longitudinal outcomes. This has also been applied in other
applied areas such as for example finance (see Hu and Zhou [8]; Medina-Olivares et al. [12]). There
are load of works in the literature on joint modelling with different types of models for the longitudinal
submodels but mostly the mixed effect model is used. The survival submodels often have been applied
to time to event data, and extended to recurrent events, competing risk and cure data.

Joint modelling of these types of data has been noted to have some merits over separate modelling
of the longitudinal and survival data (See Tsiatis and Davidian [21]). Hickey et al. [6] gave a com-
prehensive review of literatures for implementation of joint models involving more than a single event
time per subject. They considered the distributional and modelling assumptions, including the associ-
ation structure, estimation approaches, software implementations, and clinical applications. Alsefri et
al.[1] gave a review of developments in Bayesian joint models covering articles published up to July
2019. And from the literature, joint modelling with spatial components is rare, even with frequentist
approach. Martins et al. [10], Martins et al. [11] and Rappl et al. [16] have been identified in the
literature to have dealt with Bayesian joint modelling with spatial component, while Martins et al.,
[11] included a survival model with spatial long-term survivors, where Markov chain Monte Carlo
(MCMC) was used for the posterior distribution evaluation.

Lázaro et al., [9] presented implementation of integrated Laplace approximation (INLA) in general
mixture cure survival model with covariate information for the latency and the incidence model within
a general scenario with censored and non-censored information. van Niekerk et al. [22] showed that
a joint model with a linear bivariate Gaussian association structure is still a latent Gaussian model
(LGM) and thus can be implemented using most existing packages for LGMs especially R-INLA and
van Niekerk et al. [23] proposed a fully non-parametric spline component to competing risk joint
model with nonlinear longitudinal trajectories to capture non-linear behaviour over time in the form of
a random walk order two model.

There have been many literatures reporting the computational constraint of Markov chain Monte
Carlo (MCMC) technique in joint modelling, and they have been shown to be limited to relatively
small samples and model specifications, as well as have slow convergence properties (Rustand et al.
[20]). The approximate Bayesian approach, INLA, introduced by Rue et al. [18] is slowly gaining
usage for joint modelling as an alternative to MCMC, see van Niekerk et al. [23], Medina-Olivares et
al., [13], Rustand et al. [19] and Rustand et al. [20].

The motivation for this study is firstly the fact that in real life situations, the trajectories of lon-
gitudinal biomarkers are not usually linear and hence linear mixed effects model will not adequately
describe these trajectories. Secondly, in real life it is also noted that in many clinical trials there are
patients who may not experience the survival event even after a long time after the end of the follow-up
period. Hence, the possibility of cure proportion should be considered. Thirdly, with the pioneering
work of Rue et al. [18], we can have an alternative to MCMC that have been shown to be efficient and
time saving. Therefore, the contribution of this study is the modelling of longitudinal outcome with
nonlinear trajectories and mixture cure survival event using LGM and implemented using INLA, for
the case where the individual deviation is shared from the mean at time t as defined by the random
effects.
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2. Methodology

Given sample observation yim, on the i-th patient at the m-th time point, let Tim be the event time for
the i-th patient at the m-th time point, which may be right censored. The event indicator is given as δim

= 1 if event is observed and δim = 0 if censored and zim then is the latent variable classifying the patient
as cured or not at the end of the follow-up. We observe that any patient with survival time observation
at a particular point in time is classified to the population of uncured patients.

The observed data for the i-th patient without any covariate is Di = { yim , Tim , δim , zim }. The Di

’s are assumed to be independent across patients, reflecting the belief that the disease process evolves
independently for each patient. We also assume that Tim and yim are conditionally independent given
some covariates of interest and a set of unobserved subject-level random effects.

2.1. Longitudinal model component

Given longitudinal observation yim and assuming that for a marginal generalized linear model, the
population is from some probability model with density f (Y |X;β;U). We also assume that the longitu-
dinal outcomes yim, are conditionally independent and follow a well-defined distribution, G, with some
density function g, linear predictor ηL and hyperparameters θL , hence a structured additive model for
the longitudinal component is given as follows:

g−1 {E (yim | X, β,U)} = ηL = β0+βX +
n∑

i=1

M∑
m=1

fm(uim) + bimuim + ϵ (2.1)

where fm(uim) is the m-th latent random effect of covariate uim for i-th patient, which could be spatial
effects, temporal effects, patient or group-specific intercepts. β represent the linear fixed effects of the
covariates X, bim is the vector of random effects of intercept and slope, where β0 plus bim gives the
combined effect of the intercept and random intercepts terms specifying that the event depends on the
patient-specific level of the longitudinal profile at time t = 0. We also have the structured random effect
fm(uim) which we take as cubic splines with internal knots at 1 and 4 years to account for nonlinear
trajectories of the longitudinal outcome, ϵ is the unstructured random effects.

2.2. Cure survival model component

Given the event time Tim, let Z be a cure random variable defined as Z= 0 if that patient is susceptible
for experiencing the event of interest, and Z = 1 if the patient is cured. Cure and uncured probabilities
are P(Z = 1) = π and P(Z = 0) = 1 - π, respectively. The survival functions for patients in the cured and
uncured population, Sc(t) and Su(t), t > 0, respectively, are

S u(t) = P (Tim > t |Z = 0)

S c(t) = P (Tim > t |Z = 1) = 1

The general survival function for Tim can be expressed in terms of a mixture of both cured and uncured
populations in the form

S (t) = P (Tim > t) = + (1−) S u(t) (2.2)
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Cure fraction π is also known as the incidence model and event time Tim in the uncured population is
also referred to as the latency model (Peng and Taylor, [15]).

Covariates in the incidence model
The effect of a baseline covariate vector x1 on the cure proportion is typically modelled by means

of a logistic link function expressed as

logit
[

(β1)
]
= β′1x1≡ (β1) =

exp
{
β′1x1

}
1 + exp

{
β′1x1

} (2.3)

where β1 is the vector of regression coefficients associated to x1 and π is the cure proportion.
Covariates in the latency
The Cox proportional hazards model is usually formulated in terms of the hazard function for the

event time as

hu (t | hu0, β2) = lim
∆t→∞

P (t ≤ Tim < t + ∆t |T ≥ t)
∆t

= hu0(t)exp
{
β′2x2

}
(2.4)

where hu0(t) is the baseline hazard function that determines the shape of the hazard function. Model
(2.4) can also be presented in terms of the survival function of Tim as

S u (t|S u0, β2) = [S u0(t)]exp{β′2 x2} (2.5)

where S u0(t) = exp
{
−

∫ t

0
hu0 (s) ds

}
represents the survival baseline function and some hyperpa-

rameter θS .

2.3. Joint Model of Longitudinal and Cure Survival Outcomes as LGMs

The modelling approach assumes a logistic distribution for the probability of cure in the incidence
model in (2.3) and the Cox proportional hazard (2.4) for the survival time with a Weibull baseline
hazard function hu0 (t | λ, α) = λαtα−1 with λ and α as the scale and shape parameters respectively. γ
is the association parameter estimating the strength of association between the survival and longitudinal
components, thus we define

hi (s)=hu0 (s) ηS
i (s)

(
exp

{
−

∫ t

0
hi (u) du

}
+logit [ ]

)
The linear predictors of the joint model becomes

ηL,J
i (t) = ηL

i (t)

ηS ,J
i (s) = ηS

i (s) + γ
(
ηL

i (s)
)

where γ is a smooth function facilitates the joint estimation of the models and can define as in our
case, a nonlinear longitudinal trajectory and event process with cure proportion by using the entire
longitudinal predictors as shared random effect.
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2.4. Likelihood function of Joint Model

The likelihood of the longitudinal outcome is

LL
(
y
∣∣∣ ηL

)
=

NL∏
i=1

g
(
yi

∣∣∣ ηL
i (t)

)
(2.6)

Given survival observations d = {Tim , δim , zim} and parameter vector R= (β1, β2, α, λ), the likelihood
for the mixture cure survival becomes

LS (d | R) =
N∏

i=1

Li (R | d) =
N∏

i=1

ηS
i Rzi

(
1 − ηS

i R
)1−zi

hiu(ti | R)δi(1−zi)S iu(ti | R)1−zi (2.7)

Our task here will be to present equations (2.6) and (2.7) as LGMs by showing its specific hierar-
chical structure. The first level of the hierarchy involves the likelihood function given a latent field
= (β, β1, β2, η

S , ηL, fm (•) , bim, λ, ϵ) and a vector of hyperparameters θ=
(
θL, θS , α, τ−1, γ

)
, hence the

likelihood function is

p (Di | χi, θ) =
n∏

i=1

M∏
m=1

p (yim | χim, θ)

where the parameters are constant and D and χ have the same dimension.
The next level of the hierarchy involves the conditional distribution of the latent field χ which is

assumed to have a multivariate Gaussian prior with zero mean, such that it forms a Gaussian Markov
random field with sparse precision matrix matrix Q(θ2), i.e. χ∼N(0,Q−1(θ2)), this is given as

p (χ | θ) = (2π)nm
|Q(θ2)|

1
2 exp

(
−

1
2
χ′Q(θ2)χ

)
Then at the final level of the hierarchy, a prior on the hyperparameter vector p(θ) can then be formulated
for the set of hyperparameters θ= (θ1, θ2), which could be non-normal.

From this hierarchical Bayesian formulation the joint posterior distribution is then given as:

p (X, θ|D)∝ p (θ) p (X | θ)
∏

i

p (Di | X, θ)

∝ p (θ) |Q (θ2)|
1
2 exp

−1
2
χ
′

Q (θ2) χ+
n∑

i=1

log (Di | χi, θ)

 (2.8)

Within this framework the joint posterior density (2.8) and subsequently the marginal posterior densi-
ties, p (χi | D); i = 1 , . . . , n and p (θ|D) can be efficiently and accurately calculated using the integrated
Laplace approximation methodology developed by Rue et al. [18]. The marginal posterior densities
becomes

p (χi | D)=
∫

p (χi, θ | D)dθ=
∫

p (χi, θ | D) p (θ|D)dθ

and
p (θi | D)=

∫
p (θ | D)dθ− j
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2.5. Posterior Estimation using Integrated Laplace Approximation

To obtain the posterior distribution of the model parameters under Bayesian framework, by Bayes’
theorem, the conditional posterior distribution

p (θi, χi | Di) =
p (Di | θi, χi) p (θi, χi)

p (Di)
∝ p (Di | θi, χi) p (χi | θi) p (θi)

where p (χi | θi) and p (θi) are prior distributions and the focus is on approximating the multidimen-
sional integral from the marginal likelihood p (Di | θi, χi) and approximation technique of INLA has
been shown to provide exact approximations to the posterior estimates at faster rates than sampling-
based methods such as Markov Chain Monte Carlo (MCMC) especially for complex and hierarchical
models (see Rustand et al. [20]).

We consider the Laplace transformation using a second-order Taylor series expansion for the inte-
gral of the density function p (χ) by taking the form of (Blangiardo and Cameletti, [2]).∫ ∞

−∞

p (χ)dχ=
∫ ∞

−∞

exp (logp (χ) ) dχ=
∫ ∞

−∞

exp (g (χ)) dχ (2.9)

Since for unimodal functions the integral value is mainly determined by the behaviour around the
mode of g (χ), a second-order Taylor approximation of g (χ) can be substituted for g (χ) to calculate an
approximate value of the integral.

Let χ∗ be the global maximum of χ which is defined as

χ∗=argmax χg (χ) ,

then
∂g (χ)
∂χ

∣∣∣∣∣
χ=χ∗
= 0

for g (χ) to be approximated as

g (χ) ≈ g (χ∗) + 0.5 (χ−χ∗)′ Hg (χ∗) (χ−χ∗)

where Hg (χ∗) is the Hessian of g (χ∗), and equation (2.9) can be written as∫ ∞

−∞

p (χ)dχ=
∫ ∞

−∞

exp
(
g (χ∗) + 0.5 (χ−χ∗)′ Hg (χ∗) (χ−χ∗)

)
dχ

=exp (g (χ∗))
∫ ∞

−∞

exp
(
0.5 (χ−χ∗)′ Hg (χ∗) (χ−χ∗)

)
dχ

=exp (g (χ∗))
∫ ∞

−∞

exp
(
−0.5 (χ−χ∗)′ {−Hg (χ∗)} (χ−χ∗)

)
dχ

=exp (g (χ∗)) (2π)
nm
2 |Hg (χ∗)|−

1
2×∫ ∞

−∞

(2π)−
nm
2 |Hg (χ∗)|−

1
2 exp

(
−0.5 (χ−χ∗)′ {−Hg (χ∗)} (χ−χ∗)

)
dχ
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The integral is associated with the density of a multivariate Gaussian distribution and putting
−Hg (χ∗) = Q (χ∗), the precision matrix for the random vector χ∗ yields∫ ∞

−∞

p (χ)dχ≈exp (g (χ∗)) (2π)
nm
2 |Hg (χ∗)|−

1
2 ×

∫ ∞

−∞

(2π)−
nm
2 |Q (χ∗)|−

1
2 exp

(
−0.5 (χ−χ∗)′ Q (χ∗) (χ−χ∗)

)
dχ

≈ (2π)
nm
2 |Q (χ∗)|−

1
2 exp (g (χ∗)) .

The conditional posterior distribution of p (X, θ|D) is defined from the joint posterior distribution in
Equation (2.8) as

p (X, θ|D)∝p (θ) |Q (θ)|
1
2 exp

−1
2
χ
′

Q (θ) χ+
n∑

i=1

logp (Di | χi, θ)


which can be rewritten as, ignoring elements with χ.

p (X|θ,D)∝exp

−1
2
χ
′

Q (θ) χ+
n∑

i=1

gi (χi)

 (2.10)

Gaussian approximation
The Gaussian approximation of Equation (2.10), pG (χ | θ,D) is reached by matching the mode and

the curvature at the mode of p (X|θ,D). The mode is computed iteratively by using a Newton Raphson
method. Let µ(0) be the initial value of the mode, and expand gi (χi) around µ(0)

i =
(
µ(0)

i1 , . . . , µ
(0)
iN

)
to

the second order Taylor expansion,

gi (χi) ≈ gi

(
µ(0)

i

)
+ b′iχi −

1
2

c′iχ
′

iχi (2.11)

where bi and ci depend on µ(0). Substituting equation (2.11) into equation (2.10) yields

pG (χ | θ,D) ≈ gi

(
µ(0)

i

)
exp

(
−

1
2
χ
′

(Q+c)χ+b′χ
)

∝ exp
(
−

1
2
χ
′

(Q+c) χ+b
′

χ

)
.

A Gaussian approximation of pG (χ | θ,D) is obtained, with the precision matrix (Q+diag (c) ) and
mode µ(2.1), which is the solution of (Q+diag (c)) µ(1) = b. The process can then be iterated, with µ(2.1)as
the new starting value, until it converges to a Gaussian distribution with, say, mean µ( j) → µ(∗) = χ∗ and
precision matrix Q( j) → Q(∗) = Q+diag (c∗) , j = 1, 2, . . . , where an appropriate convergence criterion
must be used.

The resulting approximation will then be (Opitz, [14]):

pG (χ | θ,D) ∝ exp
(
−

1
2

(χ−χ∗ (θ))
′

(Q (θ)+diag (c)) (χ−χ∗ (θ))
)
,
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where c is the second-order term in the Taylor expansion of
∑n

i=1 logp (Di | χi, θ) at modal value χ∗ (θ) .
For the marginal posterior conditional distribution p (χi | θ,D) included in the computation of the

marginal posterior p (χi | D), Rue et al. [18] discussed three approximations p̃ (χi | θk,D) where θk are
weighted points to be used in the integration, Gaussian, full Laplace and simplified Laplace approx-
imation. The Gaussian approximation is generally not best if the true density of p (χi | θ,D) is not
symmetric, the full Laplace approximation is a correction of Gaussian approximation and accurate but
at a very expensive computational cost, the simplified Laplace approximation which is based on the
Taylor series expansion of the full Laplace approximation is sufficiently accurate for most applications
(Blangiardo and Cameletti, [2]).

If the mean of χ is µ, the density of χ is

p (χ) = (2π)−n/2
|Q|1/2exp

[
−

1
2

(χ−µ)T Q (χ−µ)
]

(2.12)

The sparse matrix Q is factorised as Cholesky triangle product LLT , and only non-zero terms are
computed due to the Markov property and L ji = 0. Let LTχ=r where r ∼ N(0, 1), then we have that
Liiχi = ri−

∑n
k=i+1 Lkiχk for i = n, . . . , 1. Multiplying each side with χ j, j ≥ i and taking the expectation

yields the recursion

Σi j =
∂2

i j

Lii
−

1
Lii

n∑
k=i+1

LkiΣk j j ≥ i, i = n, . . . , 1

where Σ = Q−1 is the covariance matrix and ∂i j = 1 if i = j and ∂i j = 0 otherwise. These recursion
results in Gaussian approximations p̃G (χ | θ,D) with mean µi (θ) and marginal variance σ2

i (θ).
Laplace approximation
Laplace approximation is obtained from Gaussian approximation to χ−i |χi, θ,D , p̃GG. Laplace ap-

proximation is given as

p̃LA (χi | θ,D) ∝
p (χ, θ,D)

p̃GG (χ−i |χi, θ,D )

∣∣∣∣∣
χ−i=χ−i∗(χi,θ)

(2.13)

Rue et al. [18] noted that p̃GG is recomputed for each value of χiand θ since its precision matrix
depends on χiand θ, and they proposed two modifications. The first avoids the optimisation step in
computing p̃GG (χ−i |χi, θ,D ) by approximating the modal configuration,

χ−i
∗ (χi, θ)≈E p̃G (χ−i |χi )

The second modification uses, for some ai j (θ) when j , i,

E p̃G

(
χ j |χi

)
−µ j (θ)

σ j (θ)
= ai j (θ)

χi − µ j (θ)
σi (θ)

The idea is to compute a set around i, Ri (θ), where only χ js for which the dependence between χ j

and χi decay as the distance between nodes i and j increases determine the marginal of χi, hence
Ri (θ) =

{
j :

∣∣∣ai j (θ)
∣∣∣ > 0.001

}
.

The density p̃LA (χi | θ,D) is then represented by

p̃LA (χi | θ,D) ∝ N
{
χi; µi (θ) , σ2

i (θ)
}

exp {cubic spline (χi)} (2.14)
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The cubic spline is fitted to the difference of the log-density of p̃LA (χi | θ,D) and p̃G (χi | θ,D)at the
selected abscissa points, and then the density is normalized by using quadrature integration (Rue et al.
[18]).

Simplified Laplace approximation
The simplified Laplace approximation p̃S LA (χi | θ,D) is obtained via a series expansion of

p̃LA (χi | θ,D) around χi = µi (θ) to correct the Gaussian approximation p̃G (χi | θ,D) for location and
skewness. Assume

d(3)
j (χi, θ) =

∂3

∂χ3
j

log {p (Di | χi, θ)}

∣∣∣∣∣∣∣
χ j=E p̃G (χ j|χi)

(2.15)

exists, then

log
{
p̃S LA

(
χs

i

∣∣∣ θ,D)}
= constant −

1
2

(
χ(s)

i

)2
+ γ(1)

i (θ) χ(s)
i +

1
6

(
χ(s)

i

)3
γ(3)

i (θ) + · · ·

where
γ(1)

i (θ) =
1
2

∑
j∈T

σ2
i (θ)

{
1 − corr p̃G (χi, χ j)2

}
d(3)

j {µi (θ) , θ}σ j (θ) ai j (θ)

γ(3)
i (θ) =

∑
j∈T

d(3)
j {µi (θ) , θ}

{
σ j (θ) ai j (θ)

}3
. (2.16)

We refer to Rue et al. [18] for more details on the procedures as well as further discussions on the
approximations error and its asymptotics with practical issues.

2.6. Joint Model diagnostics in INLA

Conditional Predictive Ordinates (CPO) are a cross-validation criterion for model assessment com-
puted for each observation as

CPOi = p
(
D̂i = Di

∣∣∣ D−i

)
=

∫
p
(
D̂i = Di

∣∣∣ χ)p (χ | D−i) dχ

with D̂i denoting the predicted longitudinal outcome and time to event for the i-th patient, χ the all-
parameter vector, D−i the data vector without the i-th observation, and p (χ | D−i) the posterior distri-
bution of χ predicted without Di.

The CPO for each observation is the posterior probability of observing that observation when the
model is fit using all the data except the one in question. Large values of CPO indicate a better fit of
the model to the data, while small values implies not a good fit for that observation.

A measure that summarises CPO is

−

n∑
i=1

log (CPOi)

with smaller values meaning better model fit.
The probability integral transform (PIT) is a predictive measure alternative to the CPO which is for

validating and comparing models. The predictive density is examined for a subset of the observed data
based on all the observations and it is given as

p (χi | D−i, θ) ∝
p (χi | D, θ)
p (Di | χi, θ)
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p (χi | D−i) ∝
p (θ | D)

p (Di | D−i, θ)

where
p (Di | D−i, θ) =

∫
p (Di | χi, θ) p (χi | D−i, θ)dχi

PIT i = Prob
(
Dnew

i ≤ (Di | D−i)
)

An unusually small or large PIT i (assuming continuous observations) indicates a possibly surprising
observation which may require further attention (Rue et al. [18]). Furthermore, if the histogram of the
PIT is is too far from a uniform distribution, the model can be questioned (Hicketier, [5]).

Deviance information criteria is noted to be a popular information criterion for hierarchical models
and is well defined for improper priors in most cases (Rue et al. [18]). It is defined as two times the
mean of the deviance minus the deviance of the mean. It is given as

DIC (χ, θ) = −2
∑
i∈I

log {p (Di | χi, θ)} + constant

The mean of the deviance is evaluated by first computing the conditional mean conditioned on θ by
using univariate numerical integration for each i ∈ I, then by integrating out θ with respect to p (θ | D).
The deviance of the mean requires the posterior mean of each χi, i ∈ I, which is computed from the
posterior marginals of χis.

The Watanabe-Akaike information criterion (WAIC) is also called the widely applicable Bayesian
information criterion (WABIC) is similar to DIC only that the effective number of parameters is com-
puted differently. See Watanabe [24] and Gelman et al. [3] for details.

WAIC = −2(DWAIC − pWAIC),

where DWAIC measures the fit of the model defined as DWAIC =
∑n

i=1
∑M

m=1 logE χ|D
[
p (Di | χ)

]
and pWAIC denotes the effective number of parameters defined as pWAIC =∑n

i=1
∑M

m=1 Varposterior
[
logp (Di | χ)

]
. The lower the WAIC, the better the fit. This is preferable

to the DIC because it computes the effective number of parameters for the variance for each data point
separately, and then takes the sum (Gelman et al. [3]).

The marginal likelihood (MLIK) obtained in INLA can be used to compute posterior probabilities
of models fitted and in turn the Bayes factor which can be used to compare, for example model m1 and
model m2 as

p (m1 | D)
p (m2 | D)

=
p (D | m1)
p (D | m2)

×
p(m1)
p (m2)

2.7. Description of the Renal transplantation Application Data

The approach discussed in this paper will be applied to Renal transplantation data collected on 407
patients suffering from chronic kidney disease who underwent, between 21 January 1983 and 16 Au-
gust 2000, a primary renal transplantation with a graft from a deceased or living donor in the University
Hospital of the Catholic University of Leuven (Belgium). Chronic renal disease is a progressive loss of
renal function over a period of months or years through five stages. Each stage is a progression through
an abnormally low and progressively worse glomerular filtration rate (GFR) (Hickey et al. [7]). The
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dataset records 3 repeated measures (2 continuous and 1 binary), and an event time. The clinical inter-
est has been noted to lie in the long-term performance of the new graft, and especially in the time to
graft failure survival. During the follow-up period, patients were periodically tested for the condition
and performance of their kidneys. Our interest in this study is the longitudinal response variable GFR
which measures the filtration rate of the kidneys. Rizopoulos and Ghosh [17] showed that the renal
graft failure data is unusual in the subject-specific longitudinal evolutions, in that there exist highly
nonlinear longitudinal profiles for the longitudinal outcomes, for which linear or quadratic models are
not suitable. They proposed a natural cubic spline-based approach in order to flexibly capture the pos-
sibly nonlinear shapes of the subject-specific evolutions and explicitly tuned the degree of smoothness
of the nonlinear evolutions by estimating the knots’ position for the natural spline basis.

3. Simulation studies evaluation of the models

We evaluate the performances of the model with spline, quadratic and linear specifications for the
longitudinal trajectories by working on simulation studies, the survival component was fitted with a
mixture cure model, while varying the sample size of the simulated data as 50, 80, 150, 300, 500 and
1000 and the number of integration points was set to 500. We used the metrics of mean square error
(MSE) and bias to see how each model estimated the true model parameters. The model parameters
true values were chosen for the longitudinal fixed effect components as intercept was 4; covariates
x1Y and x2Y were both 1; time variable timej was -0.5; residual error (variance) was 0.97. For the
random effect, we chose intercept as 0.75; timej as 0.75; intercept and timej interaction was 0.3. For
the survival component we chose Weibull shape parameter value as 1.3; Weibull scale value as 1.12;
for incidence part, the covariates x1 and x2 both were 0.6; for latency part, the cure binary covariates
z1 and z2 were both 0.3; and the association parameter as 0.25. The parameters values were used
to simulate the datasets from using the models in equation (2.1), equation (2.3) and equation (2.5)
and fitted using linear, quadratic and spline longitudinal trajectories. The results of the simulation are
presented in Table 1, Table 2 and Table 3.

From the MSE and Bias values in the tables, we deduced from the results that the estimation of
fixed effect of time and the random effect of time in the longitudinal component showed similar results
with quadratic and spline specifications for the sample sizes considered except for larger sample size
of 1000 where linear specification was better. For the mixture cure component, we saw that in small
sample sizes linear specification resulted in closer estimates for latency and association parameters (as
seen for sample sizes 50 and 80). The lower MSE and bias values for the mixture cure components
and the association parameters for the spline specification showed that the spline functions resulted in
better estimates for the incidence and latency parts as sample size increased.

Hence we conclude from the simulation results that sample size plays a crucial role in the estimation
output no matter the longitudinal trajectories specification as the MSE and Bias varied across sample
sizes. Overall, the spline specification was better in estimating the incidence and latency parameters of
the mixture cure model. The nonlinear trajectory of the longitudinal outcome accounted for the shared
random effect of the baseline covariate vectors x1 and x2 on the cure proportion.
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4. Application to Renal Transplantation Data

4.1. Exploratory analysis on renal transplantation data

The longitudinal trajectories of the glomerular filtration rate (GFR) of the kidneys of the 407 pa-
tients show that it is neither linear nor could be expressed as quadratic trajectory (see Figure 1 on the
longitudinal plots of GR) as noted by Rizopoulos and Ghosh [17].

Figure 1. Spaghetti Plot of GFR of Patient’s kidney (ml/min/1.73m)

We decided to see how these nonlinear trajectories are distributed between the female and male
gender (Figure 2) and we observed quite a remarkable difference in the longitudinal trajectories of the
glomerular filtration rate of the kidneys of female patients from the male patients. We see that the
GFR of female patients were remarkably lower than the GFR of male patients, though there were also
some male patients who had lower GFR also, within the range of those of observed female patients
with equally lower GFR. This can give us clue to the dichotomous nature of the survival event as to the
possibilities of some patients no experiencing the graft failure during the follow-up period.

Figure 3 further shows the longitudinal trajectories of the GFR of the kidneys of 6 randomly selected
patients and we also observed that the nonlinear trajectories of the GFR is clearly seen for each of the
GFR in each patient. Interest decided to see how these nonlinear trajectories are distributed between
the female and male sexes impact the time to graft failure or the long term survivor of the kidneys.

We further describe the GFR data using other covariate variables such as age and weights of patients
including gender of patients to see how the event status and GFR longitudinal trajectories varies. Figure
4 shows the boxplots of age of patient at day of surgery, preoperative weight of patients and GFR of
patients against the event status and gender of Patients. The first frame shows that the mean age of
patients at day of surgery was lower in patients that had graft failure than those who did not (especially
among female patients, as it can be seen from the plot that interestingly the mean age of male patients
seem to be similar of both event groups) in the period of follow-up.

The preoperative weight of the patients was remarkably different between the patients who experi-
ence graft failure and those who did not. The same pattern of the mean weight of female patients lower
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Figure 2. Spaghetti Plot of GFR of kidneys of Female and Male Patients

than those of the male patients is observed in both the graft failure group and the censored group. For
the GFR of the kidneys of the patients, the mean GFR was around 40 to 50 ml/min/1.73m, for which
the female patients had lower GFR compared to the male patients in both the graft failure and the cen-
sored groups. As noted in the previous sections, chronic kidney disease is a progressive loss of renal
function over a period of months or years through different stages consisting of a progression through
an abnormally low and progressively worse glomerular filtration rate, there seemed to be some abnor-
mally in the data as there were unusual data-points with high GFR values and yet appeared under the
graft failure group. This observation is seen with the tails in the density plot of GFR shown in Figure
5.

From Figure 5, we observe that the mean value of the GFR is higher in the censored group than the
graft failure group, even though their tails at higher values waned together. Similar pattern is observed
for the gender factor as the mean value of GFR is higher in male patients than female patients, yet there
are both female and male patients with higher values of GFR.

From Figure 6 which shows the different survival curves estimated by splitting the data according
to the different types of genders, we observe that survival seems to be worst for male patients than for
female patients, which shows that the female patients group has higher survival than the male patient
group.

The result from the Kaplan-Meier estimates of the probability of survival for the female and male
genders shows that there is high survival among the female patients, but the data descriptions earlier
seen showed that female patients had lower GFR than male patients, hence, looking at the longitudinal
observations and the survival data separately can lead to conflicting conclusions (see Hickey et al. [6]).
Also, in survival modelling, censorship and time to event are assumed to be independent, however,
there may be association between these two variables for which other covariates observed may be able
to explain. Clinical state can be modelled on several covariates using longitudinal data and censoring
also depends on these covariates (Gómez-Rubio, [4]), hence the need for joint modelling, which puts
into consideration the association between the covariates and the survival variables.
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Figure 3. Spaghetti Plot of GFR of the kidneys of 6 randomly selected Patients

4.2. Joint modelling on application data and Discussion of Results

Our approach here is to fit the joint model for the renal transplantation data using the LGM frame-
work as implemented with INLA by considering the possibilities of cure proportion in the survival
component of the modelling.

Longitudinal component:

g f ri,m(t) = ηL
i (t) + εi(t) (β10+bi10)+

(
bi11+βyr1

)
yearsi + βwt1weighti + βage1agei + βmale1genderi+

βyr2yearsiF1(t) + βwt2weightiF1(t) + βage2ageiF1(t) + βyr3yearsiF2(t) + βwt3weightiF2(t)+
βage3ageiF2(t) + εi(t)

Incidence model component:

logit
[
πi (β1)

]
= β20 + βwt4weighti + βage4agei + βmale2genderi

Latency model component:

hiu (t | hu0, β2) =
(
λαtα−1

)
exp

{
ηL

i (t) + γ
(
βwt5weighti + βage5agei + βmale3genderi

)}
We fit two numbers natural cubic spline basis functions F1(t) and F2(t) with internal knots at 2 years
for longitudinal outcome GFR. For priors specification, as noted earlier, we assume a multivariate
Gaussian prior for the latent field χ with precision matrix Q(θ) conditioned on θ, which we also assume
prior distributions p(θ) for which all the regression coefficients and the Weibull log(λ) scale parameters
follow a vague normal distribution centred at zero (N(0, 1000)) while the shape, α ∼ Ga(0.01, 0.01),
parameter assumes a log-gamma distribution.

The result of the modelling of the glomerular filtration rate (GFR) jointly with the risk of renal graft
failure after kidney transplantation is given in the following tables showing the longitudinal component
and the cure survival output comprising the incidence and latency models incorporated in the joint
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Figure 4. Boxplot of Age, Weight and GFR vs Event status and Gender of Patients

model coefficients outputs. Table 4 shows that the time posterior with the spline components are
significant in the nonlinear trajectory of GFR except for the linear coefficient, and we see similar
significance for the covariates of weight, age and gender. The random effects of intercept and slope are
respectively significant 205.113 with 95% credible interval (181.523, 233.550) and 16.181 with 95%
credible interval (14.284, 18.159).

From Table 5 regarding the association with clinical endpoints, we observed some negative associ-
ation between the GFR and the risk of graft failure, -0.109 with 95% credible interval of -0.119 and
-0.100. We see that smaller values of GFR as seen by the negative association parameter are associated
with a higher risk for a graft failure. We can also observe from the baseline covariates that only gender
seemed to impact to some extent the risk of graft failure as the risk for graft failure is 0.113 times more
likely in males than in females, we saw this pattern from Kaplan-Meier estimates of the probability of
survival in Figure 6.

Figure 7 shows the patient-specific intercepts and the respective unique patient identifications for
each patient (random intercept) in the longitudinal and survival components. Estimates of the shared
random effects from the longitudinal component copied to the survival component are used check
for dependence between the longitudinal and survival components. From Figure 7, there is a linear
dependence between them because the random effects in the survival component are the random effects
in the longitudinal component multiplied by a constant scaling factor, represented by the red line whose
slope is the posterior mean of the scaling factor.

4.3. Comparing different specification for longitudinal GFR trajectory

Comparing the nonlinear trajectory specification for the longitudinal process with a linear and a
quadratic model specifications using the model predictive measures of DIC, WAIC, CPO and marginal
likelihood (MLIK), shows that the spline specification for the longitudinal outcome, GFR is a better
fit than the linear and quadratic specifications from the table below. This is shown in Table 6 by the
smaller values of DIC, WAIC, CPO and bigger marginal likelihood values for the spline longitudinal
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Table 4. Longitudinal Component Model Coefficients of Joint model with Mean Posterior
and 95% credible Intervals

Longitudinal outcome: -
Fixed effects: Mean SD Lower 95% CI Upper 95% CI

β10 3.088 9.181 -14.906 21.083
βyr1 -0.310 0.415 -1.123 0.503
βyr2 13.546 7.205 -0.575 27.668
βyr3 -14.101 6.931 -27.686 -0.516
βwt1 1.092 0.924 -0.719 2.902
βage1 0.210 0.925 -1.602 2.022
βmale1 2.162 0.684 0.821 3.503
βwt2 3.466 8.928 -14.033 20.965
βage2 3.547 8.929 -13.953 21.048
βwt3 -3.538 8.807 -20.799 13.722
βage3 -3.675 8.807 -20.937 13.586
σϵ 128.153 0.899 126.178 129.650

Random effects:
σb10 205.113 13.509 181.523 233.550
σb11 16.181 1.004 14.284 18.159

covb10,b11 -10.585 3.606 -16.657 -2.800

Table 5. Cure Survival Components Model Coefficients of Joint model with Mean Posterior
and 95% credible Intervals

Survival outcome: -
Incidence: Mean SD Lower 95% CI Upper 95% CI
β20 -1.534 0.654 -2.816 -0.252
βwt4 0.001 0.011 -0.020 0.022
βage4 0.017 0.009 0.000 0.034
βmale2 0.065 0.238 -0.401 0.532

Latency:
α 0.975 0.001 0.973 0.976
λ 0.016 0.011 0.004 0.044
βwt5 -0.001 0.011 -0.023 0.020
βage5 -0.007 0.009 -0.024 0.010
βmale3 0.113 0.225 -0.329 0.555

Association parameter:
γ -0.109 0.005 -0.119 -0.100
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Figure 5. Density Plot of GFR vs Event status and Gender of Patients

Table 6. Summary of values of DIC, WAIC, CPO and marginal likelihood for Linear,
Quadratic and Spline fits to the Renal GFR data.

Model DIC WAIC CPO MLIK Time (secs.)
Spline trajectory 512648.70 511513.90 259609.95 -289643.80 1330.73
Linear trajectory 528069.60 527405.70 266069.60 -284868.00 208.52

Quadratic trajectory 579324.30 578161.80 292799.30 -322290.20 2461.22

model compared to those values for the linear and quadratic longitudinal model specifications. Best
model is one with smaller DIC, WAIC, CPO and bigger Marginal likelihood.

This better fit of spline function for GFR using INLA is in line with the result reported by Rizopou-
los and Ghosh [17] who used natural cubic splines basis specification for the longitudinal outcomes
using MCMC run with WinBUGS for which they noted that a linear fit revealed the potential bias in
measuring the effect of the true underlying longitudinal outcomes to the time-to-graft failure.

5. Conclusion

This paper presented the modelling of longitudinal outcome and mixture cure survival event un-
der shared random effect using latent Gaussian modelling approach, which involves the deterministic
approximate Bayesian inference of Laplace approximation in evaluating the posterior distribution of
the resulting Bayesian modelling. The paper looked at joint model with longitudinal and cure survival
outcomes expressed as a latent Gaussian model and hence how the integrated Laplace approximation
introduced by Rue et al. [18] can be used to evaluate its posteriors.

For the longitudinal outcome a spline specification was used to capture its complex evolution and the
survival cure component is based on the specifications by Lázaro et al., [9], in which latent indicators
in the inferential process for classifying individuals in the cured and uncured groups was introduced.
The INLA was used to fit the marginal posterior distribution for the longitudinal component, survival
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Figure 6. Survival estimates of patients according to gender of patients

component and the relevant element given the latent indicator variable classifying subjects as cured or
uncured.

The modelling approach was applied to the Renal transplantation data collected on 407 patients
suffering from chronic kidney disease who underwent, between 21 January 1983 and 16 August 2000,
a primary renal transplantation with a graft from a deceased or living donor in the University Hospital
of the Catholic University of Leuven (Belgium), with focus on the longitudinal biomarker glomerular
filtration rate (GFR) and time to graft failure as survival event. Two numbers natural cubic spline
basis functions with internal knots at 2 years was fit for longitudinal outcome, GFR and for priors
specification, a multivariate Gaussian prior for the latent field was assumed with precision matrix. All
the regression coefficients and the Weibull log-scale parameters follow a vague normal distribution
centred at zero, while the shape parameter followed a log-gamma distribution.

A simulation study on the performance of linear, quadratic and spline specifications for the longi-
tudinal nonlinear trajectories and mixture cure was carried out, with varying sample sizes and compar-
isons were made using MSE and Bias. We deduced from the results that the estimation of fixed effect of
time and the random effect of time in the longitudinal component showed similar results with quadratic
and spline specifications for the sample sizes considered except for larger sample size of 1000 where
linear specification was better. For the mixture cure component, we saw that in small sample sizes
linear specification resulted in closer estimates for latency and association parameters as sample size
increased, the MSE and bias values for the mixture cure components and the association parameters
with spline specification showed lowest values indicating better estimates. Sample size plays a crucial
role in the estimation output no matter the longitudinal trajectories specification as the MSE and Bias
varied across sample sizes. Overall, the spline specification was best in estimating the incidence and
latency parameters of the mixture cure model.

We saw from the application results from Renal transplantation data that the baseline covariates for
only gender seemed to impact to some extent the risk of graft failure as the risk for graft failure is 0.113
times more likely in males than in females, we saw this pattern from Kaplan-Meier estimates of the

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue 1, 72-95



93

Figure 7. Patient-Specific Intercepts in Longitudinal model vs their copied values in survival
sub-model

probability of survival. The odds of being cured was therefore higher in females than for males after
renal transplantation.

The merit of this approach is that apart from capturing the nonlinear trajectory of the longitu-
dinal outcome, the association between the longitudinal component and survival components which
included cure fractions was also estimated. The proportion of cure patients as a function of the asso-
ciation between longitudinal and event-time process can be modelled under the latent Gaussian model
framework. The suitability of the spline nonlinear trajectory specification for the longitudinal process
was seen by comparing it with a linear and a quadratic model specifications using DIC, WAIC and
CPO and computation time. The results showed that the spline specification was best for application
data.
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