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1. Introduction

In probability theory, it has been a common practice in recent years to improve existing probability
distributions to enhance the flexibility of classical models. These modifications involve various tech-
niques, such as increasing the number of parameters, applying transformations to the original distribu-
tion, and mixing two or more distributions. The primary goal of these modifications is to improve the
adaptability and accuracy of traditional models in representing complex data sets. Numerous scholars
have contributed to the development of the Lomax distribution, having been inspired by these tech-
niques. Extreme loss scenarios and financial hazards are modeled using the Lomax distribution. Its
ability to represent heavy tails makes it possible to capture rare but significant events, such as financial
crises. It is also applied to study the distribution of income and wealth, due to its ability to model
extreme inequalities, which is common in financial data. In insurance, the Lomax distribution helps to
model claims and assess the premiums needed to cover the risk of high claims. This continuous prob-
ability distribution, sometimes referred to as the Type II Pareto distribution, is mostly used to explain
data that has a large tail. The following represents its cumulative distribution function (CDF):

H(y) = 1 −
(
1 +

y
λ

)−α
; y ≥ 0, (1.1)

where the parameters for shape and scale are, respectively, α > 0 and λ > 0. With regard to (1.1), the
probability density function (pdf) is provided by:

h(y) =
α

λ

[
1 +

y
λ

]−α−1

But inaccurate or biased modeling can have detrimental effects as well, such large financial losses or
poor choices made in crucial situations. The robustness of risk management systems and their capacity
to foresee emergencies can potentially be jeopardized by inaccurate portrayals of catastrophic events.
Given these obstacles, it is crucial to make sure that these more adaptable models are applied ethically
and with consideration for any potential biases when doing so in contexts where modeling errors could
have serious repercussions.
Recently, some researchers [1, 2] introduced new weighted Lomax distributions, while [3] produced the
three-parameter exponentiated Lomax distribution. In [4], authors transformed the Lomax distribution
to obtain the transmuted exponential Lomax distribution. [5] proposed a mixture form of the Weibull
distribution. [6] includes the power parameter β in the uniform lambert distribution to obtain the
uniform power lambert distribution. Several distribution generators have also been studied using these
different techniques, including the Marshall Olkin generator, the new Weibull-G [7], the beta-G family
[8], the beta generalized Marshall-Olkin Kumaraswamy-G family [9], the shifted Gompertz-G [10], the
Lomax generator [11], the New Lomax-G family [12], new and improved form of the Lomax model
[13], the T-R{generalized lambda} families of distributions [14], the Weibull-G family [15], the Topp-
Leone Cauchy family [16], the transmuted Weibull-G family [17], the transmuted odd log-logistic-G
family [18], the new hyperbolic sine-generator[19], the Lomax tangent generalized family [20], the
exponentiated Weibull-H family [21], the new Topp-Leone Kumaraswamy Marshall-Olkin generated
family [22], the Inverse odd Weibull family [23], the exponentiated transmuted-G family [24], the
new Power Topp–Leone [25], the transmuted exponentiated generalized-G family [26], the Weibull-X
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family [27].
Regarding a random variable T , let h(t) be its pdf, where T ∈ [a, b] for −∞ ≤ a < b < ∞. Similarly, let
W[G(x; ζ)] be its CDF, contingent upon the vector parameter ζ meeting the following requirements:

• W[G(x; ζ)] ∈ [a, b].
• In addition to being monotonically rising, W[G(x; ζ)] is differentiable.
• W[G(x; ζ)]→ a as x→ −∞ and W[G(x; ζ)]→ b as x→ +∞.

The CDF associated with the T-X family of distributions was recently defined by [28]:

F(x) =
∫ W[G(x;ζ)]

a
h(t)dt.

In this article, we propose the following staggered transformation:

W[G(x; ζ)] = x (G(x) + m) ,

where x ≥ 0, G(x; ζ) is the CDF of one of the classical models and m ≥ 0 is a constant representing the
shift parameter. W[G(x; ζ)] on [0,+∞[ satisfies the aforementioned requirements. We study here with
h(t) the density function of the Lomax function whose support is for x ≥ 0. This gives us a new family
of SHL-X shifted Lomax distributions whose CDF is defined by:

F(x; θ) = 1 −
(
1 +

x (G(x; ζ) + m)
λ

)−α
, (1.2)

where x ≥ 0 , θ = (ζ, α, λ,m) ≥ 0.
This distribution function is differentiated based on x. As a result, we get:

f (x; θ) =
α

λ

[
G(x; ζ) + m + xg(x; ζ)

] (
1 +

x (G(x; ζ) + m)
λ

)−α−1

where g(x; ζ) is the derivate of G(x; ζ).
Several motivations support our proposed transformation W[G(x; ζ)] = x(G(x; ζ) + m), including in-
creased flexibility to fit the distribution to specific data, natural extension of classical models, adapt-
ability to atypical characteristics of real data, preservation of essential mathematical properties such as
monotonicity and differentiability, ability to model shifts present in many practical applications, and
compatibility with heavy-tailed distributions. In particular, the Lomax density serves as the basis for
this new family of distributions, offering a robust framework for capturing heavy tails and data-specific
features.

2. Special members of the SHL-X distribution family

Many unique members with extremely intriguing traits have been deduced from this new family
of distributions. This section will provide a few unique models that were derived from the SHL-X
family by substituting CDFs of various classical distributions for the G(x). The shifted parameters of
the Lomax generator are α and λ in the examples below.
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1. SHL-Lomax distribution
To obtain the SHL-Lomax distribution, we take the Lomax distribution for G(x; ζ) = 1−

(
1 + x

k

)−γ
in equation (1.2). After that, the equation becomes

FS HL−L(x; θ) = 1 − λα
[
λ + x

(
1 −

(
1 +

x
k

)−γ)
+ m

]−α
,

where (γ, k, α, λ, m) > 0.
2. SHL-Gompertz distribution

The two-parameter Gompertz model’s CDF, G(x; ζ) = 1 − e−η(ebx−1), is now being examined. It
has shape parameter η > 0 and scale parameter b > 0. Then, the CDF of the SHL-G distribution
is:

FS HL−G(x; θ) = 1 − λα
[
λ + x

((
1 − e−η(ebx−1)) + m

)]−α
.

3. SHL-Rayleigh
Based on the Rayleigh distribution’s pdf and CDF, which are provided by g(x; ζ) = x

σ2 e−
x2

2σ2 and

G(x; ζ) = 1 − e−
x2

2σ2 , respectively, the CDF and pdf of the SHL-R model are defined as :

FS HL−R(x; θ) = 1 − λα
[
λ + x

(
1 − e−

x2

2σ2 + m
)]−α
,

fS HL−R(x; θ) =
αλα

[
e−

x2

2σ2
(

x2

σ2 − 1
)
+ m + 1

]
[
λ + x

(
1 − e−

x2

2σ2 + m
)]α+1 .

Likewise, we can have the following special members: SHL-Exponential, SHL-Weibull, SHL-Log
logistic, SHL-Burr.

Figure 1 demonstrates the density function representation of some special members, reflecting the
flexibility of the family, as we note the variety of curve shapes, parameter tuning, adaptability to several
types of data.

3. The Shifted Lomax-Weibull distribution

We are mainly interested in the Weibull special member. The CDF of the Weibull distribution can
be defined as follows:

G(x; ν) = 1 − e−(
x
k )

a

,

where ν = (a, k) ≥ 0 and x ≥ 0.
The linked pdf, survival function (suf), and hazard rate function (hrf) are provided, in that order, by:

g(x; ν) =
axa−1

ka e−(
x
k )

a

,

su f (x; ν) = e−(
x
k )

a
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Figure 1. Density function plots of some special members of the SHL-X family

and

hr f (x; ν) =
axa−1

ka .

This is the expression for the CDF that defines the SHL-W distribution:

F(x; θ) = 1 −

1 + x
(
1 − e−(

x
k )

a

+ m
)

λ


−α

, (3.1)

where θ = (λ, α, a, k,m) ≥ 0, x ≥ 0.
The associated pdf of (3.1) is:

f (x; θ) =
α

λ

[
1 − e−(

x
k )

a

+ m +
a
ka xae−(

x
k )

a
]

×

1 + x
(
1 − e−(

x
k )

a

+ m
)

λ


−α−1

(3.2)

The 3D depiction of the CDF and pdf of the SHL-W distribution for various values of λ, m, a, k is
shown in figure 2, which was created using Mathematica software.
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Figure 2. Distribution and density function for the Shifted Lomax-Weibull distribution

The suf and hrf of the SHL-W distribution are respectively given by:

su f (x; θ) =

1 + x
(
1 − e−(

x
k )

a

+ m
)

λ


−α

.

The survival function→ 1, when x→ 0 and→ 0, when x→ +∞.

hr f (x; θ) =
α

λ

[
1 − e−(

x
k )

a

+ m +
a
ka xae−(

x
k )

a
]

1 + x
(
1 − e−(

x
k )

a

+ m
)

λ


−1

.

The risk function→ mα
λ

, when x→ 0 and 0, when x→ +∞.
The following expression defines the cumulative hazard function:

C f (x; θ) = − log su f (x; θ).

Thus, for SHL-Weibull distibution, it is defined by:

C f (x) = α
[
log

(
λ + x

(
1 − e−(

x
k )

a

+ m
))
− log λ

]
.

The reserve risk function is found using the following expression:

R f (x; θ) =
f (x; θ)
F(x; θ)

.
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Figure 3. Plot of risk and survival functions

Therefore, that of the SHL-W distribution is:

R f (x; θ) =
f (x; θ)

1 −

1 + x
(
1−e−( x

k )
a
+m

)
λ


−α .

4. SHL-W distribution’s several mathematical characteristics

Several significant mathematical properties of the SHL-W distribution are highlighted in this sec-
tion.

4.1. The quantile function

In probabilistic inference, the quantile function is crucial, especially when dealing with the SHL-
W distribution. It is very helpful for figuring out crucial values in finance and insurance uncertainty
analyses. Finding critical values, which act as cutoff points or thresholds in a variety of statistical and
economic analyses, is one application for which it is especially helpful.
The SHL-Weibull distribution’s quantile function is determined by

Q(y; θ) = P−1
[
λ
(
(1 − y)−

1
α − 1

)]
,

where P(x; µ) = x
(
1 − e−(

x
k )

a

+ m
)

and µ = (a, k,m).
Proof
Let xy = Q(y; v); for all, y ∈ [0, 1].
Then, xy fulfills the nonlinear equation, as per the quantile function definition:

y = F(x; τ).
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Thus,

y = 1 −
[
1 +

P(x; µ)
λ

]−α
⇒ (1 − y) =

[
1 +

P(x; µ)
λ

]−α
Raising each member of the above equation to the power 1

α
, we obtain:

(1 − y)−
1
α =

[
1 +

P(x; µ)
λ

]

⇒ λ
(
(1 − y)−

1
α − 1

)
= P(x; µ).

Let’s set P(x; µ) = y,

x = P−1(y; µ),

and we have:
x = P−1

[
λ
(
(1 − y)−

1
α − 1

)]
.

As a result, the Shifted Lomax-Weibull distribution’s first, median, and third quartiles are provided by:

Q1 = P−1

λ
(3

4

)− 1
α

− 1


 ,

Q2 = P−1

λ
(1

2

)− 1
α

− 1




and

Q3 = P−1

λ
(1

4

)− 1
α

− 1


 .

With the quantile function, SHL-W’s skewness and kurtosis are simply calculated. A distribution’s
asymmetry with respect to its mean is measured by its skewness and kurtosis calculates a distribution’s
”tail” by contrasting its tails with those of a normal distribution. Indeed, the Moors kurtosis [29] and
the Bowley skewness [30] are provided by:

BS =
QY(3/4) + QY(1/4) − 2QY(1/2)

QY(3/4) − QY(1/4)

and
MK =

QY(7/8) − QY(5/8) + QY(3/8) − QY(1/8)
QY(6/8) − QY(2/8)

The SHL-Weibull distribution’s first, median, and third quartiles are shown in Table 1 for a range
of parameter values (m, α, λ). The evolution of these quantiles with respect to parameter variations is
shown in Table 1. The quartile values tend to go down as λ and α rise, suggesting that the distribution
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is increasingly concentrated around lower values. This pattern clarifies if the model is appropriate for
a given set of data. Larger values, for instance, could correspond with certain economic phenomena in
financial applications like stock market data, enabling parameter estimate that takes this behavior into
account.
Additionally, the values for kurtosis (MK) and skewness (BS) are included in Table 1. As the param-
eters α and λ grow, their values tend to decrease. This suggests that the distribution gets less skewed
and shows lower kurtosis as the parameters increase, suggesting a decrease in asymmetry and a drop
in the distribution’s tail heaviness. As a result, we may deduce that larger parameter values result in a
less peaked and more symmetrical model, which would be more suitable for datasets exhibiting these
traits.

Table 1. Quantiles, skewness, and kurtosis simulation table for various values of m, α, λ,
a = 1.2, and k = 1.5.

m = 0.25 m = 1.2
λ α Q1 Q2 Q3 BS MK Q1 Q2 Q3 BS MK

0.5

1.5 0.2814 0.5674 1.0452 0.2511 1.489 0.0858 0.2262 0.5215 0.3608 1.5681
2.7 0.1742 0.3548 0.6188 0.1876 1.311 0.0462 0.1174 0.2556 0.3198 1.435

4.00 0.1246 0.2594 0.4501 0.1715 1.258 0.0308 0.077 0.1634 0.3029 1.3929
5.4 0.0956 0.2033 0.3548 0.1692 1.234 0.0226 0.0561 0.1174 0.2934 1.371

1.0

1.5 0.4564 0.8865 1.6464 0.2770 1.599 0.1666 0.4209 0.9316 0.3351 1.560
2.7 0.2943 0.5661 0.9652 0.1896 1.348 0.0911 0.2255 0.4722 0.2946 1.395

4.00 0.217 0.4234 0.7089 0.1608 1.280 0.061 0.15 0.3092 0.2831 1.3554
5.4 0.1705 0.3387 0.5661 0.1497 1.247 0.045 0.1102 0.2255 0.278 1.339

1.7

1.5 0.647 1.2465 2.3983 0.3153 1.7440 0.272 0.6605 1.4273 0.3275 1.6098
2.7 0.42263 0.7973 1.3598 0.2051 1.3943 0.1514 0.364 0.7373 0.2745 1.3819
4 0.3207 0.602 0.9954 0.1659 1.3073 0.1023 0.2459 0.4921 0.2631 1.331

5.4 0.2562 0.4868 0.7973 0.1478 1.2678 0.0758 0.182 0.364 0.260 1.313

2.2

1.5 0.7637 1.4766 2.9266 0.3408 1.8277 0.3429 0.8166 1.7582 0.3306 1.6555
2.7 0.5058 0.9401 1.6143 0.2175 1.426 0.193 0.4557 0.9099 0.2669 1.386
4 0.384 0.7112 1.1748 0.1726 1.325 0.131 0.3106 0.612 0.253 1.325

5.4 0.309 0.577 0.9401 0.1508 1.280 0.09731 0.2316 0.4557 0.2505 1.3035

To see how skewness and kurtosis behave, we have plotted them in 3D as a function of α and a with
matlab.

4.2. Serial expansion of f

Local approximations of the density function around a specific point are obtained through series
development of the density function f (x), an essential tool in statistics and probability theory. This is
very useful for studying the local characteristics of the probability distribution, evaluating parameters
and solving various practical problems. The SHL-W distribution’s serial development is determined
by:

f (x; θ) =
∞∑

n=0

n∑
i=0

S n,ir(x), (4.1)
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Figure 4. Skewness for λ = 2.5, m = 0.25, k = 1.25

Figure 5. Kurtosis for λ = 2.5, m = 0.25, k = 1.25
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with

S n,i =

(
α + n − 1

n

)(
n
i

)
(−1)n+i+1λ−n(m + 1)n−i

and r(x; θ) = e−i( x
k )

a

xn−1
[
n − ia

ka xa
]

is the derivative of R(x; θ) = xne−i( x
k )

a

.
Proof
From (3.1), we have:

F(x; θ) = 1 −
11 + x

(
1−e−( x

k )
a
+m

)
λ


α .

Setting z =
x
(
1−e−( x

k )
a
+m

)
λ

, we have:
F(x; θ) = 1 − (1 + z)−α.

The negative binomial series allows us to write the following:

(1 + z)−α =
∞∑

n=0

(−1)n

(
α + n − 1

n

)
zn.

So, we have:

F(x; θ) = 1 −
∞∑

n=0

(−1)n

(
α + n − 1

n

)
zn. (4.2)

Let’s calculate zn.

zn =

 x
(
1 − e−(

x
k )

a

+ m
)

λ


n

= λ−nxn
[
(m + 1) − e−(

x
k )

a]n
.

Knowing that (a − b)n =
∑n

i=0

(
n
i

)
an−i(−b)i, we have:

[
(m + 1) − e−(

x
k )

a]n
=

n∑
i=0

(
n
i

)
(m + 1)n−i(−1)i

[
e−(

x
k )

a]i
.

So, we obtain

zn = λ−nxn
n∑

i=0

(−1)i

(
n
i

)
(m + 1)n−ie−i( x

k )
a

. (4.3)

Replacing the expression (4.3) in (4.2), we obtain:

F(x; θ) = 1+
∞∑

n=0

n∑
i=0

(
α + n − 1

n

)(
n
i

)
(−1)n+i+1λ−nxn
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× (m + 1)n−ie−i( x
k )

a

. (4.4)

Therefore,

f (x; θ) =
∞∑

n=0

n∑
i=0

(
α + n − 1

n

)(
n
i

)
(−1)n+i+1λ−n(m + 1)n−i

× e−i( x
k )

a

xn−1
[
n −

ia
ka xa

]
.

4.3. Renyi Entropy

The Renyi entropy can be used to measure the uncertainty or diversity of a probability distribution,
but with a α diversity parameter to adjust sensitivity to rare or frequent events. The Renyi Entropy is
calculated by

ER(X) =
1

1 − γ
log

(∫
R

f (x; θ)γdx
)

In the case of SHL-W distribution, it is defined by:

ER(X) =
1

1 − γ
log

(αλ
)γ ∞∑

n=0

n∑
i=0

γ∑
j=0

j∑
t=0

S n,i j,tI(x; θ)

 ,
where

S n,i j,t = (−1)n+i+t

(
γ(α + 1) + n − 1

n

)(
γ

j

)(
j
t

)
λ−n(m + 1)n−i+γ− ja j−t−1kn+1.

and

I(x; θ) = Γ
(
n + 1

a
+ j − t

)
.

Proof

According to the equation (3.2)

f (x; θ)γ =
(
α

λ

)γ [
1 − e−(

x
k )

a

+ m +
a
ka xae−(

x
k )

a
]γ

×

1 + x
(
1 − e−(

x
k )

a

+ m
)

λ


−γ(α+1)

. (4.5)

We may write the following by using the negative binomial series:

(1 + z)−γ(α+1) =

∞∑
n=0

(−1)n

(
γ(α + 1) + n − 1

n

)
zn.

By introducing (4.3) into the previous equation, we have:

(1 + z)−γ(α+1) =

∞∑
n=0

(−1)n

(
γ(α + 1) + n − 1

n

)
λ−nxn

n∑
i=0

(−1)i

(
n
i

)
(m + 1)n−ie−i( x

k )
a
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(1 + z)−γ(α+1) =

∞∑
n=0

n∑
i=0

(−1)n+i

(
γ(α + 1) + n − 1

n

)(
n
i

)
λ−nxn(m + 1)n−ie−i( x

k )
a

. (4.6)

Let’s develop
[
1 − e−(

x
k )

a

+ m + a
ka xae−(

x
k )

a]γ
.

If we put a = (1 + m) and b = e−(
x
k )

a ( a
ka xa − 1

)
, we have:

(a + b)γ =
γ∑

j=0

(
γ

j

)
aγ− jb j

=

γ∑
j=0

(
γ

j

)
(m + 1)γ− je− j( x

k )
a
( a
ka xa − 1

) j

and ( a
ka xa − 1

) j
=

j∑
t=0

(
j
t

)
(−1)t

( a
ka xa

) j−t
.

Consequently,

[
1 − e−(

x
k )

a

+ m +
a
ka xae−(

x
k )

a
]γ
=

γ∑
j=0

j∑
t=0

(
γ

j

)(
j
t

)
(−1)t(m + 1)γ− j

( a
ka xa

) j−t
e− j( x

k )
a

. (4.7)

By substituting equation (4.6) and equation (4.7) into (4.5):

f (x; θ)γ =
(
α

λ

)γ ∞∑
n=0

n∑
i=0

γ∑
j=0

j∑
t=0

(−1)n+i+t

(
γ(α + 1) + n − 1

n

)(
γ

j

)(
j
t

)
× λ−n(m + 1)n−i+γ− jxn+a( j−t)e−(i+ j)( x

k )
a
( a
ka xa

) j−t
.

Then the ER(X) is

ER(X) =
1

1 − γ
log

(αλ
)γ ∞∑

n=0

n∑
i=0

γ∑
j=0

j∑
t=0

(−1)n+i+t

(
γ(α + 1) + n − 1

n

)(
γ

j

)(
j
t

)
λ−n

×(m + 1)n−i+γ− j
( a
ka

) j−t ∫ ∞

0

(
xn+a( j−t)e−(i+ j)( x

k )
a)

dx
]
.

Assuming h = (i + j)
(

x
k

)a
, we have x = k

(
h

i+ j

) 1
a and dx = k

a(i+ j)
1
a
h

1
a−1dh.

So, ∫ ∞

0

(
xn+a( j−t)e−(i+ j)( x

k )
a)

dx =
kn+a( j−t)+1

a(i + j)
n+1

a + j−t

∫ ∞

0
h

n+1
a + j−t−1e−h.dh

Given that: Γ(z) =
∫ ∞

0
tz−1e−tdt where Γ(.) represents the gamma function, then∫ ∞

0

(
xn+a( j−t)e−(i+ j)( x

k )
a)

dx =
kn+a( j−t)+1

a(i + j)
n+1

a + j−t
Γ

(
n + 1

a
+ j − t

)
.
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Consequently, we obtain:

ER(X) =
1

1 − γ
log

(αλ
)γ ∞∑

n=0

n∑
i=0

γ∑
j=0

j∑
t=0

(−1)n+i+t

(
γ(α + 1) + n − 1

n

)(
γ

j

)(
j
t

)
λ−n

×(m + 1)n−i+γ− ja j−t−1kn+1Γ

(
n + 1

a
+ j − t

)]
.

4.4. Moment of order s

The s-order moment of the proposed SHL-W distribution is defined by:

Ms =

∞∑
n=0

n∑
i=0

S n,iks+n

(
1
i

) s+n
a [
−

( s
a

)]
Γ

( s + n
a

)
. (4.8)

Proof:
We compute the moment of order s as follows:

Ms = E(Xs)

=

∫
R

xs f (x; θ)dx.

Substituting equation (4.1),

Ms =

∫ ∞

0
xs
∞∑

n=0

n∑
i=0

S n,ie−i( x
k )

a

xn−1
[
n −

ia
ka xa

]
dx

=

∞∑
n=0

n∑
i=0

S n,i

∫ ∞

0
e−i( x

k )
a

xs+n−1
[
n −

ia
ka xa

]
dx.

Making substitution i
(

x
k

)a
= t, we have x = k

(
t
i

) 1
a and dx = k

a

(
1
i

) 1
a t

1
a−1.

Ms =

∞∑
n=0

n∑
i=0

S n,i

∫ ∞

0
e−tks+n

(
1
i

) s+n
a

t
s+n
a −1

(n
a
− t

)
dt

=

∞∑
n=0

n∑
i=0

S n,iks+n

(
1
i

) s+n
a

[
n
a

∫ ∞

0
e−tt

s+n
a −1dt −

∫ ∞

0
e−tt

s+n
a dt

]
.

Ms =

∞∑
n=0

n∑
i=0

S n,iks+n

(
1
i

) s+n
a [n

a
Γ

( s + n
a

)
− Γ

( s + n
a
+ 1

)]
.

Given that Γ(z + 1) = zΓ(z), then: Γ
(

s+n
a + 1

)
=

(
s+n
a

)
Γ
(

s+n
a

)
. Therefore,

Ms =

∞∑
n=0

n∑
i=0

S n,iks+n

(
1
i

) s+n
a [
−

( s
a

)]
Γ

( s + n
a

)
.
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4.5. Moment generating function

In probability and statistics, the moment generating function is a powerful tool for completely defin-
ing the distribution of a random variable. It is used to determine the moments of the distribution and
simplify theoretical analyses. The moment generating function is given by:

Mx(t) =
∞∑

n=0

n∑
i=0

∞∑
l=0

S n,i
tl

l!
ks+n

(
1
i

) s+n
a

[
−

(
l
a

)]
Γ

(
l + n

a

)
.

Proof:
The following determines the moment generating function:

MX(t) = E(etX).

Knowing that etx =
∑∞

l=0
(tx)l

l! , so:

MX(t) = E

 ∞∑
l=0

(tX)l

l!


=

∞∑
l=0

E

(
(tX)l

l!

)
=

∞∑
l=0

tl

l!
E

(
Xl

)
.

Using equation (4.8), we have

E
(
Xl

)
=

∞∑
n=0

n∑
i=0

S n,ikl+n

(
1
i

) l+n
a

Γ

(
l + n

a

) [
−

(
l
a

)]
.

Therefore,

MX(t) =
∞∑

n=0

n∑
i=0

∞∑
l=0

S n,i
tl

l!
kl+n

(
1
i

) l+n
a

[
−

(
l
a

)]
Γ

(
l + n

a

)
.

4.6. Incomplete moments

Incomplete moments are an extension of ordinary moments, which allow us to determine the mo-
ments of a distribution by taking into account part of the distribution rather than the whole distribution.
They are very useful when we are interested in particular subsets of the data or when we are partially
observing the distribution. The incomplete moment is defined by Ms(y) =

∫ y

−∞
xs f (x; θ)dx. For SHL-W

distribution, we have:

Ms(y) =
∞∑

n=0

n∑
i=0

S n,iks+n

(
1
i

) s+n
a

Rγ(x), (4.9)

with
Rγ(x) =

(
−

s
a

)
γ
( s + n

a
, i

(y
k

)a)
+ i

s+n
a

(y
k

)s+n
e−i( y

k )
a

.
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Proof:

Ms(y) =
∫ y

0
xs f (x; θ)dx

=

∞∑
n=0

n∑
i=0

S n,i

∫ y

0
e−i( x

k )
a

xs+n−1
[
n −

ia
ka xa

]
dx.

Making substitution i
(

x
k

)a
= t, 0 < t < i

(
y
k

)a
.

Ms(y) =
∞∑

n=0

n∑
i=0

S n,iks+n

(
1
i

) s+n
a

n
a

∫ i( y
k )

a

0
e−tt

s+n
a −1dt −

∫ i( y
k )

a

0
e−tt

s+n
a dt


=

∞∑
n=0

n∑
i=0

ks+n

(
1
i

) s+n
a

S n,i

[n
a
γ
( s + n

a
, i

(y
k

)a)
− γ

( s + n
a
+ 1, i

(y
k

)a)]
,

because γ(s, x) =
∫ x

0
ts−1e−tdt where γ(.) represents the incomplete gamma function.

Knowing that γ(s + 1, x) = sγ(s, x) − xse−x, this leads to:

Ms(y) =
∞∑

n=0

n∑
i=0

S n,iks+n

(
1
i

) s+n
a [(
−

s
a

)
γ
( s + n

a
, i

(y
k

)a)
+ i

s+n
a

(y
k

)s+n
e−i( y

k )
a
]
.

4.7. Average waiting time

The term ”average waiting time” describes the typical amount of time you have to wait for anything
to happen. It is a central tendency metric that expresses the average or normal waiting time. The
definition of it is as follows:

mt(x) = x −
1

F(x)

∫ x

−∞

t f (t)dt.

In the case of the SHL-W distribution, the average waiting time is:

mt(x) = x −
1

F(x)

∞∑
n=0

n∑
i=0

S n,ikn+1
(
1
i

) n+1
a

[(
−

1
a

)
γ

(
n + 1

a
, i

( x
k

)a
)
+ i

n+1
a

( x
k

)n+1
e−i( x

k )
a
]
.

Proof:
mt(x) = x −

1
F(x)

∫ x

0
t f (t)dt.

Knowing that from equation (4.9), we have:∫ x

0
t f (t)dt = M1(x)

=

∞∑
n=0

n∑
i=0

S n,ikn+1
(
1
i

) n+1
a

[(
−

1
a

)
γ

(
n + 1

a
, i

( x
k

)a
)
+ i

n+1
a

( x
k

)n+1
e−i( x

k )
a
]
.

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue 1, 41-71



57

Therefore,

mt(x) = x −
1

F(x)

∞∑
n=0

n∑
i=0

S n,ikn+1
(
1
i

) n+1
a

[(
−

1
a

)
γ

(
n + 1

a
, i

( x
k

)a
)
+ i

n+1
a

( x
k

)n+1
e−i( x

k )
a
]
.

4.8. Mean Residual Life

A crucial idea in survival analysis and reliability theory is mean residual life (MRL). It gives the
anticipated amount of time that a person or component will live if it survives till a specific time, t.

The average residual life function for the SHL-W distribution is defined below:

MRL =
1

1 − F(x)

∞∑
n=0

n∑
i=0

S n,ikn+1
(
1
i

) n+1
a

[(
−

1
a

)
γ

(
n + 1

a
, i

( x
k

)a
)
+ i

n+1
a

( x
k

)n+1
e−i( x

k )
a
]

5. Actuarial measures

5.1. Risk measures

Financial risk quantification and management require the application of actuarial science’s risk
metrics, such as Value at Risk (VaR), Tail Value at Risk (TVaR), and Tail Value of the quantile (TVq).

5.1.1. VaR measure

Tail Value at Risk, or TVaR, is a risk metric primarily utilized by the insurance and banking
sectors. It provides the ability to quantify the severe loss risk over and beyond a predetermined de-
pendability level. TVaR assesses the average loss in the tail of the distribution once this threshold is
exceeded, whereas VaR (Value at Risk) sets a maximum loss threshold for a certain confidence level.
Put otherwise, it offers an illustration of the magnitude of damages that surpass the worst-case scenario
that is protected by VaR. Thus, for the SHL-W distribution, the quantile function is defined as follows:

VaRq = P−1
[
λ
(
(1 − q)

−1
α − 1

)]
,

where P−1(x) is the inverse of the function P(x) = x
(
1 − e−(

x
k )

a

+ m
)
.

5.1.2. TVAR measure

Conditional Value at Risk (CVaR), also known as Tail Value-at-Risk, is a risk measure that evaluates
losses in excess of Value at Risk (VaR). Since the probability of losses being less than or equal to VaR
is p, TVaR calculates the expected value of losses in the worst-case scenario, i.e. when losses exceed
VaR. The TVaR of SHL-W distribution is:

TVaRq =
1

1 − q

∞∑
n=0

n∑
i=0

kn+1
(
1
i

) n+1
a

S n,iRΓ(x), (5.1)

where RΓ(x) =
[
−

(
1
a

)]
Γ
(

n+1
a , i

(VaRq

k

))
.

Proof:
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The TVAR is defined by:

TVaRq =
1

1 − q

∫ ∞

VaRq

x f (x)dx.

TVaRq =
1

1 − q

∞∑
n=0

n∑
i=0

S n,i

∫ ∞

Varq

e−i( x
k )

a

xn
[
n −

ia
ka xa

]
dx

TVaRq =
1

1 − q

∞∑
n=0

n∑
i=0

S n,ikn+1
(
1
i

) n+1
a

[
−

(
1
a

)]
Γ

(
n + 1

a
, i

(
VaRq

k

))
.

5.1.3. TVq measure

TVq is a measure that combines the concepts of VaR and TVaR, focusing on losses in the tail of the
loss distribution. It is calculated by: TVq(X) = E(X2/X > VaRq) − (TVaRq)2. For SHL-W distribution
this gives:

TVq(X) =
1

1 − q

∞∑
n=0

n∑
i=0

S n,ikn+2
(
1
i

) n+2
a

[
−

(
2
a

)]
Γ

(
n + 2

a

)
− (TVaRq)2. (5.2)

Proof:

TVq(X) = E(X2/X > VaRq) − (TVaRq)2

=
1

1 − q

∫ ∞

VaRq

x2 f (x)dx − (TVaRq)2

=
1

1 − q

∞∑
n=0

n∑
i=0

S n,i

∫ ∞

VaRq

e−i( x
k )

a

xn+1
[
n −

ia
ka xa

]
dx − (TVaRq)2

TVq(X) =
1

1 − q

∞∑
n=0

n∑
i=0

S n,ikn+2
(
1
i

) n+2
a

[
−

(
2
a

)]
Γ

(
n + 2

a

)
− (TVaRq)2.

5.1.4. Expected Shortfall (ES)

Expected Shortfall at a confidence level p% measures the average loss that exceeds the VaR at the
same confidence level. This means ES provides an average of the worst-case losses, giving a more
comprehensive view of tail risk. It’s defined by:

ES q =
1
q

∫ q

0
VaRtdt

ES q =
1
q

∫ q

0
P−1

[
λ
(
(1 − t)

−1
α − 1

)]
dt.

5.2. Premium Principles

Premium principles are used to obtain insurance premiums for events, taking into account the level
of risk associated with the event. Several premium principles have been developed over the decades.
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5.2.1. Expected Value Principle

The principle of expected value is defined as:

EVP = (1 − ρ)E(X),

where 0 < ρ < 1.
The EVP of the SHL-W distribution is defined by:

EVP = (1 − ρ)
∞∑

n=0

n∑
i=0

S n,ikn+1
(
1
i

) n+1
a

[
−

(
1
a

)]
Γ

(
n + 1

a

)
.

5.2.2. Tail Variance Premium Principle

TVP makes it possible to assess risk by taking into account the heavy tails characteristic of these
distributions. The SHL-W’s TVP is calculated as follows:

TVP = TVaR + ρTV (5.3)

The TVP of the SHL-W follows by substituting the expressions (5.1) and (5.2) in Eq. (5.3).

5.3. Income inequality metrics

5.3.1. Gini index

A population’s inequality in the distribution of wealth or income is gauged by the Gini index. It
is widely employed in economic research to evaluate the level of social inequality. For the SHL-W
distribution, It is defined by:

GI =
∞∑

n=0

n∑
i=0

[(
α+n−1

n

)
−

(
2α+n−1

n

)] (
n
i

)
IG

µ0

with

IG = (−1)n+i(m + 1)n−iλ
−n

a

(
k
ia

)n+1

Γ

(
n + 1

a

)
and the mean (1st-order moment derived from equation(4.8)) is denoted by µ0.

Proof:
The Gini index’s described as follows:

GI =
1
µ0

∫ ∞

0
F(x) (1 − F(x)) dx

F(x) (1 − F(x)) = F(x) − F2(x)

= 1 − (1 + z)−α −
[
1 − (1 + z)−α

]2
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= (1 + z)−α − (1 + z)−2α

then,

(1 + z)−α =
∞∑

n=0

n∑
i=0

(
α + n − 1

n

)(
n
i

)
(−1)n+iλ−n(m + 1)n−ixne−i( x

k )
a

,

(1 + z)−2α =

∞∑
n=0

n∑
i=0

(
2α + n − 1

n

)(
n
i

)
(−1)n+iλ−n(m + 1)n−ixne−i( x

k )
a

and ∫ ∞

0
xne−i( x

k )
a

dx =
1
a

(
k
ia

)n+1

Γ

(
n + 1

a

)
.

So:

GI =
∞∑

n=0

n∑
i=0

[(
α+n−1

n

)
−

(
2α+n−1

n

)] (
n
i

)
IG

µ0

5.3.2. Lorenz curve

The distribution of wealth or income within a population is graphically represented by the Lorenz
curve. One purpose for it is to illustrate distributional disparity. Economic fairness is often studied
using this curve in conjunction with the Gini index. We have:

C(x) =
1
µ0

∫ x

0
t f (t)dt

C(x) =
1
µ0

M1(x)

where M1(x) is the incomplete moment of order 1.
Therefore

C(x) =
∞∑

n=0

n∑
i=0

S n,ikn+1
(
1
i

) n+1
a

[(
−1

a

)
γ
(

n+1
a , i

(
x
k

)a)
+ i

n+1
a

(
x
k

)n+1
e−i( x

k )
a
]

µ0

5.3.3. Bonferroni Index

Comparable to the Gini, the Bonferroni inequality indicator is more sensitive to low earnings. This
indicator concentrates more on inequality at the bottom of the distribution, whereas the Gini index is
more evenly distributed. The Bonferroni index emphasizes inequality in this segment of the income
distribution by concentrating on the percentage of the people with lower earnings. It is obtained by:

BI(x) =
C(x)
F(x)

BI(x) =
∞∑

n=0

n∑
i=0

S n,ikn+1
(
1
i

) n+1
a

[(
−1

a

)
γ
(

n+1
a , i

(
x
k

)a)
+ i

n+1
a

(
x
k

)n+1
e−i( x

k )
a
]

F(x)µ0
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6. Estimation of parameters

Let x1, x2, ..., xn represent a size n random sample of the variable X. The likelihood function can be
obtained by utilizing the SHL-W distribution’s pdf, which is provided by:

L(x;α, λ,m, a, k) =
n∏

i=1

f (xi; θ)

= αnλnα
n∏

i=1

[
1 − e−(

xi
k )a

+ m +
a
ka xa

i e−(
xi
k )a

]
×

[
λ + xi

(
1 − e−(

xi
k )a

+ m
)]−α−1

.

By setting v(xi) = 1 − e−(
xi
k )a

+ m + a
ka xa

i e−(
xi
k )a

and u(xi) = λ + xi

(
1 − e−(

xi
k )a

+ m
)
,

we obtain

L(x;α, λ,m, a, k) = αnλnα
n∏

i=1

v(xi)u(xi)−α−1.

The log-likelihood is defined by:

lnL(x;α, λ,m, a, k) = nlnα + nαlnλ +
n∑

i=1

ln(v(xi)) − (α + 1)
n∑

i=1

ln(u(xi)).

To obtain estimates of the parameters of the SHL-W distribution, we calculate the partial derivatives
of the log-likelihood with respect to the various parameters, and derive the estimates by cancelling the
first partial derivatives.
The first partial derivatives of lnL(α̂, λ̂, m̂, â, k̂) which must be equal to zero are:

∂lnL
∂α
=

n
α
+ nlnλ −

n∑
i=1

ln(u(xi));

∂lnL
∂λ
=

nα
λ
− (α + 1)

n∑
i=1

1
u(xi)

;

∂lnL
∂m
=

n∑
i=1

1
v(xi)

− (α + 1)
n∑

i=1

xi

u(xi)
;

∂lnL
∂a
=

n∑
i=1

( xi

k

)a
e−(

xi
k )a

[
2ln

(
xi
k

)
− a

(
xi
k

)a
ln

(
xi
k

)
+ 1

]
v(xi)

− (α + 1)
n∑

i=1

xiln
(

xi
k

) (
xi
k

)a
e−(

xi
k )a

u(xi)
;

∂lnL
∂k
=

n∑
i=1

1
k

(
xi
k

)a
e−(

xi
k )a (
−1 + a

(
xi
k

)a
+ a2

)
v(xi)

+
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a
k(a+1) (α + 1)

n∑
i=1

xa+1
i e−(

xi
k )a

u(xi)
.

The complexity of the equations, and the interdependence of the variables, make it difficult to obtain
exact solutions in closed form. In this context, the use of numerical methods becomes unavoidable. Nu-
merical methods provide us with a pragmatic and efficient approach to solve these complex equations.
They allow us to navigate through the subtleties of the system and approximate solutions iteratively.
Thanks to these techniques, we can manage the complexity of the model and obtain precise parameter
estimates, which would otherwise be impossible with traditional analytical methods.

7. Monte Carlo Simulation

In order to assess the consistency of the maximum likelihood estimator of the SHL-Weibull dis-
tribution, we will study the behavior of the maximum estimator as the sample size increases, using
a full simulation analysis performed with R software. We have generated 300 independent samples,
with variable sizes of n = 100, 250, 400, 500 and 1000 from the SHL-Weibull distribution. For each
replication, after determining the MLEs, we appraise the root mean square error (RMSE) and mean
bias (Bias) to determine the precision and coherence of the estimated parameters. The table 2 shows
the results obtained from these measurements with the R software.

8. Application

This section demonstrates the adaptability of the SHL-W distribution by applying it to three
different data sets. The suggested model’s maximum likelihood estimates (MLEs) and goodness-of-fit
standards are contrasted with those of rival models.

• Lomax-Weibull of Lomax-G family [11]

fLW(x) = αmαa
xa−1

ka [m + (x/k)a]α+1 .

• Weibull-Weibull [31]

fWW(x) = αakλxk−1
[
eλxk
− 1

]a−1
e−α

(
eλxk
−1

)a
+λxk

.

• Odd burr XII Exponentiated Weibull [32]

fOBXIIEW(x) = mλαakxa−1
(
1 − e−kxa)2α−1 (

2 −
(
1 − e−kxa)α)

×
(
1 −

(
1 − e−kxa)α)−2

j(x; θ)λ−1
[
1 + j(x; θ)λ

]−(m+1)
,

where j(x; θ) =
[ (

1−e−kxa )2α

1−(1−e−kxa)α
]
.
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Table 2. Findings from Monte Carlo simulations of the SHL-W distribution: Mean, RMSE,
and mean bias computations

(α, λ, m, a, k) = (1.5, 2, 0.004, 1.8, 0.8) — (α, λ, m, a, k) =(0.5, 1, 0.005, 2, 0.5) —
n Mean RMSE Bias Mean RMSE Bias

100

1.7103 0.8411 0.2103 0.6970 0.2181 0.1970
2.5163 1.9797 0.5163 1.9146 1.1841 0.9146
0.0317 0.0888 0.0277 0.0541 0.1479 0.0491
2.2104 1.0391 0.4104 3.1227 3.6452 1.1227
0.8860 0.4340 0.0860 0.4822 0.1445 -0.0178

250

1.5960 0.3377 0.0960 0.6885 0.1972 0.1885
2.2471 0.7704 0.2471 1.8147 0.9255 0.8147
0.0179 0.0395 0.0139 0.0314 0.0818 0.0264
1.9442 0.3847 0.1442 2.4668 1.0845 0.4668
0.8100 0.1387 0.0100 0.4639 0.0768 -0.0361

400

1.5676 0.2428 0.0676 0.6862 0.1914 0.1862
2.1663 0.5688 0.1663 1.7827 0.8501 0.7827
0.0141 0.0308 0.0101 0.0229 0.0541 0.0179
1.9079 0.3107 0.1079 2.2861 0.6335 0.2861
0.8032 0.0889 0.0032 0.4591 0.0656 -0.0409

500

1.5649 0.2116 0.0649 0.6852 0.1898 0.1852
2.1493 0.4930 0.1493 1.7705 0.8271 0.7705
0.0124 0.0263 0.0084 0.0241 0.0564 0.0191
1.8745 0.2571 0.0745 2.2476 0.5295 0.2476
0.8038 0.0774 0.0038 0.4613 0.0598 -0.0387

1000

1.5514 0.1483 0.0514 0.6820 0.1841 0.1820
2.1132 0.3403 0.1132 1.7379 0.7660 0.7379
0.0072 0.0137 0.0032 0.0154 0.0308 0.0104
1.8399 0.1594 0.0399 2.1502 0.3174 0.1502
0.7985 0.0540 -0.0015 0.4590 0.0518 -0.0410

• Beta exponentiated Weibull [33]

fBEW(x) =
aα

kaB(λ,m)
xa−1e−(

x
k )

a (
1 − e−(

x
k )

a)αλ−1 (
1 −

(
1 − e−(

x
k )

a)α)−m−1
,

where B(λ,m) = Γ(a)Γ(b)
Γ(a+b)

• Exponentiated Weibull Weibull [34]

fEWW(x) =
mαa
kλα

( x
k

)aα−1
e[−λ−α( x

k )
aα]

×
[
1 − e[−λ−α( x

k )
aα]]m−1
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• McDonald Modified Weibull Distribution [35]

fMcDW(x) =
λ

B(a, b)

(
α + kmxm−1

)
e−αx−kxm

×
(
1 − e−αx−kxm) (

1 − e−αx−kxm)aλ−1

The adoption of the Weibull distribution as a foundation allows for a comparison between various mod-
els and is the essential similarity between these distributions. These distributions have been compared
and assessed using a number of well-known statistical metrics as well as others. It should be mentioned
that the most ideal model is the one with the lowest criterion. We utilized the R programming language
to compute each of these metrics.
The suggested models are assessed and contrasted using a variety of metrics. The criteria that are des-
ignated are the Akaike Information Criterion (AIC), the Hannan-Quinn Information Criterion (HQIC),
and the Bayes Information Criterion (BIC). These criteria are defined as follows:

AIC = 2k − 2 log L,

BIC = k log n − 2 log L

and

HQIC = 2k log(log n) − 2 log L,

where n represents the sample size, k represents the number of parameters in the statistical model, and
L represents the maximal value of the log-likelihood function in the model under consideration.

8.1. Dataset of an actual life-risk insurance portfolio

With the minimal technical requirements needed to compute life-risk insurance premiums on an
annual and infra-annual basis, the first dataset describes anonymised data pertaining to policies in
effect on December 31, 2009 in the life insurance portfolio of a Spanish insurance firm [36].

It is made up of 76102 observations with 15 variables, the data sheet for which is available at
https://doi.org/10.3886/E178881V1. The economic amount that beneficiaries would receive in the
event of death, given in euros, is referred to as the capital at risk (variable capital) in this set.
Capital at risk represents the amount that the insurer could potentially lose in unfavorable scenarios.
Accurate modeling of risk capital is fundamental to guarantee solvency and optimize capital utilization.

Figure 6 provides a visualization of the empirical probability density and empirical distribution
functions, which can be used to better understand the data distribution.
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(a) pdfs representation (b) CDFs representation

Figure 6. Visualization of empirical pdfs and CDFs for dataset I

Tables 3 and 4 present the parameter estimators and criteria for dataset I.

Table 3. Predicted values for various models

Models α̂ λ̂ k̂ â m̂ b̂
SHL-W 2.44 0.39 13.44 25.46 0.00 -

LW 5.78 - 11.78 15.36 3.58 -
WW 0.000059 0.359 1.82 0.318 - -

OBXIIEW 5.8 2.95 0.07 1.48 0.75 -
BEW 14.447 0.57 0.098 6.04 3.38 -
EWW 5.11 3.7 5.13 1.84 5.126 -
McDW 0.092 102.38 3.87 275.11 0 317.09

Table 4. Measures of selection for various models

Models −l̂ AIC BIC HQIC
SHL-W 70406.15 140822.3 140868.5 140836.5

LW 79524.7 159057.4 159094.34 159068.74
WW 79237 158482.49 158519.45 158493.85

OBXIIEW 86749.96 173509.9 173556.12 173524.12
BEW 70988.19 141986.37 142032.57 142000
EWW 71393.65 142797.31 142843.51 142811.5
McDW 72031.6 144075.3 144130.73 144092.33

8.2. Insurance and financial services dataset

The second dataset comes with annual statistics on insurance and financial services (% of services
exports, BoP) broken down by nation and is sourced from the World Bank website. Insurance and
financial services include the different kinds of insurance that resident insurance companies offer to
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non-residents and vice versa, as well as the financial auxiliary and intermediary services that are traded
between residents and non-residents (not including insurance company and pension fund services).
We will focus on Benin between 1988 and 2023, i.e. 34 observations: 4.95, 4.37, 5.95, 4.94, 7.07,
6.19, 5.04, 5.7, 2.61, 3. 25, 4.68, 3.56, 2.18, 2.11, 2.54, 0.48 , 1.41, 2.11, 2.24, 2.05, 2.12, 2.3, 2.07,
0.82, 10.72, 1.98, 3.74, 4.8, 3.74 , 3.91, 24.8, 11.38, 9.96, 5.61.
Figure 7 provides a visualization of the empirical probability density and empirical distribution func-
tions, which can be used to better understand the data distribution.

(a) pdfs representation (b) CDFs representation

Figure 7. Visualization of empirical pdfs and CDFs for dataset II

The estimated values for the dataset studied are presented in Table 5. In order to evaluate the per-
formance of the various models used for this data set, we performed information criteria calculations,
the results of which are summarized in table 6.

Table 5. Predicted values for various models

Models α̂ λ̂ k̂ â m̂ b̂
SHL-W 3.59 9.18 4.25 1.46 0.0 -

LW 5.0 - 1.93 1.34 15.34 -
WW 195.4 0.68 0.004 246.3 - -

OBXIIEW 0.54 7.31 0.4 0.23 0.89 -
BEW 1.46 8.6 2 0.491 1.25 -
EWW 10.8 0.91 0.74 0.29 1.84 -
McDW 0.94 1.86 0.05 1.92 0.004 0.31
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Table 6. Measures of selection for various models

Models −l̂ AIC BIC HQIC
SHL-W 81.02 172.04 179.68 174.65
LW 83.8 175.6 181.71 177.69
WW 84.92 177.83 183.94 179.9
OBXIIEW 81.07 172.13 179.8 174.74
BEW 81.6 173.2 180.84 175.81
EWW 81.61 173.21 180.84 175.81
McDW 82.24 176.47 185.63 179.6

8.3. Unemployment insurance data set

This is a real sawtooth data set from the insurance industry. The Maryland Department of Labor
reported that it represents monthly unemployment insurance measures from July 2008 to April 2013.
The data set comprises 21 variables, of which variable number 12 (called ”# of First UI Checks issued
- Ex. Fed Employees”) was the focus of our analysis.
You can access the data at: https://catalog.data.gov/dataset/unemployment-insurance-data-july-2008-
to-april-2013.

(a) pdfs representation (b) CDFs representation

Figure 8. Visualization of empirical pdfs and CDFs for dataset III

Tables 7 and 8 present the parameter estimators and criteria for dataset III.

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue 1, 41-71

https://catalog.data.gov/dataset/unemployment-insurance-data-july-2008-to-april-2013
https://catalog.data.gov/dataset/unemployment-insurance-data-july-2008-to-april-2013


68

Table 7. Predicted values for various models

Models α̂ λ̂ k̂ â m̂ b̂
SHL-W 1.59e+04 7.21e+05 67.8 5 0

LW 0.58 34.96 6.54 21.77
WW 1.06e-06 1.26 0.13 6.37 -

OBXIIEW 0.325 54.55 0.16 0.12 0.57
BEW 2.26 41.26 0.1 1.12 0.2
EWW 277.56 3.1 1.74 5.56 0.094
McDW 0.145 2.8 0.032 92.01 0.007 0.22

Table 8. Measures of selection for various models

Models −l̂ AIC BIC HQIC
SHL-W 262.73 535.46 545.76 539.47

LW 264.18 536.35 544.6 539.56
WW 281.55 571.11 579.35 574.32

OBXIIEW 264.18 538.36 548.66 542.37
BEW 268.43 546.86 557.16 550.87
EWW 266.15 542.3 552.6 546.31
McDW 268.53 549.05 561.41 553.87

With a comparatively low AIC of 535.46 when compared to the other models, the SHL-Weibull
(SHL-W) model appears to provide a decent balance between accuracy and complexity. We observe
that a better fit to the data is provided by the SHL-W distribution. Among all the distributions exam-
ined, almost all the criteria for the SHL-W model are actually the lowest. As a result, we determine
that among its models, the SHL-W distribution performs the best.
A thorough examination shows that the newly proposed model performs substantially better than the
other models, as evidenced by PDF and CDF graphs for the SHL-W model and its rival models (Fig.
6–8), as well as the computation of information criteria like AIC, BIC, and HQIC as shown in tables
4, 6, 8. This outcome highlights the exceptional adaptability of our model in capturing the intricate
features of insurance and financial data, demonstrating its capacity to offer more precise and depend-
able modifications for risk assessment and well-informed decision-making in intricate ever-changing
settings.

9. Conclusion

The family of shifted Lomax-X distributions (SHL-X), which we propose as a new class of mod-
els, generates distributions with Lomax as the basic distribution. In this paper, we have developed a
member of this family, the SHL-W distribution. Numerous mathematical features have been explored,
including actuarial measures, Renyi entropy, ordinary and incomplete moments, and quantiles. The
maximum likelihood method is used to estimate the model parameters.Three applications on real data,
in particular in insurance and finance, show the importance and potential of SHL-W distribution in
actuarial science.
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SHL-W distributions have potential uses outside of actuarial science and finance because of their in-
trinsic modeling qualities. These adaptable statistical models will be especially helpful to the insurance
sector because they offer better coverage.
However, this article does not address all of the family’s properties and extensions. These include the
following: quantile estimation, bootstrap estimation, uniform unbiased and minimum variance estima-
tion, uniform residual entropy, Song measure, goodness-of-fit tests, tolerance intervals, multivariate
generalizations, Bayesian and empirical Bayes estimation, uniform unbiased and minimum variance
estimation, weighted least squares estimation, order statistics estimation, L-moment estimation, and
order of magnitude estimation. We want to write on a few of these topics in an upcoming piece.
We intend to investigate these facets in upcoming projects. For instance, we intend to create quan-
tile estimation through the use of Monte Carlo methods or distribution function inversion techniques.
Additionally, we will conduct quality tests by utilizing statistical tests like the Kolmogorov-Smirnov
and Cramér-von Mises tests to compare theoretical distributions with empirical data. Furthermore, we
will investigate Bayesian estimation with special application to medical and actuarial data, utilizing
techniques like Variational Bayesian Approximation (VBA) and Markov Chain Sampling (MCMC).

As a result, our study clears the path for upcoming innovations that may improve our knowledge of
and ability to use SHL-X models, solidifying their position in cutting-edge statistical modeling.

Conflict of Interest: The authors declare no competing interests.
Data Availability: Any data that supports the findings of this study is included in the article.
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