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Abstract: Customer churn prediction is a critical task in the telecommunication (telecom) industry, 

where accurate identification of customers at risk of churning plays a vital role in reducing 

customer attrition.   Feature selection (FS) is an integral part in Machine Learning (ML) models 

which aims    to improve performance and reduce computational time (CT). This work optimizes 

Ant Colony Opti- mization (ACO) and its structure to empower its capability for customer churn 

prediction in the telecom industry. The effect of the ACO’s hyper-parameters, like the pheromone 

value, heuristic information, pheromone decay factor, and the number of ants, in the optimization 

process are investigated. The optimization objective is measured by evaluating the prediction 

performance of selected features using the k-nearest neighbor classifier. Experiments are performed 

on three different open-source customer churn prediction datasets. The results are evaluated using 

several evaluation metrics and compared with three other optimization methods. The findings show 

that the optimized ACO performs is better than the other comparative methods. The Friedman and 

Holms test demonstrate that optimized ACO is stable and effective. This work suggests that selected 

optimal customer characteristics can be utilized to offer valuable insights and reduce churning rate. 
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1. Introduction 

Over time, the telecom industry has experienced rapid growth that it has intensified rivalry among service 

providers. This has led to a significant loss of revenue due to churning. Churner consumers are those who 
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switch from one service provider to another in the market [1]. To better understand customers' demands, 

telecom businesses use customer relationship management systems as an integrated approach in their strategic 

plan. These systems contain historical data about the company clients, which ML techniques can be then used to 

turn those data into useful knowledge [2]. In ML techniques, data preprocessing is essential, and FS is generally 

considered a foremost preprocessing step. 

The method of eliminating redundant and irrelevant features to determine the Optimal Feature Subsets 

(OFS) is known as FS. The primary aim of FS is to choose the most important features without altering the 

original data representation and, thus, to select OFS that have the lowest redundancy and the highest relevance 

to the task. It is essential in a wide range of applications, including text mining, image recognition, spam 

detection, and finance [3, 4, 5, 6]. According to [7], the benefits of FS are as follows: (i) reduces the data 

required for learning process, (ii) improves prediction, (iii) learns knowledge that can easily be understood, and 

(iv) minimizes computation time (CT). 

A large number of features in datasets demand investigation of Metaheuristic Algorithms (MAs), which can 

deal with FS effectively [8, 9, 10]. Grey wolf optimizer [11], bat algorithm [12], cuckoo search algorithm [13], 

Particle Swarm Optimization (PSO) [14], Firefly Algorithm (FFA) [15], dragonfly optimization algorithm [16], 

crow search algorithm [17], ACO [18], and Multi-Verse Optimizer (MVO) [19] are examples of well-known 

MAs. This class of algorithm has gained popularity in a wide range of applications [20]– [23]. 

Several researchers used ACO for classification in the application of customer churn prediction. In [24], 

ACO is applied to induce an accurate and comprehensible rule-based classification model. In another work [25], 

the author discussed the potential of utilizing ACO in the application of churn prediction and the results showed 

that the ACO attains a compelling performance. In [26], Mult objective cost sensitive ACO (MOCS-ACO) with 

genetic algorithm (GA) is combined to improve classification results. The GA is employed to select OFS while 

the MOCS-ACO is used as a classification model in [27], the authors employed ACO to identify OFS and the 

identified features are then fed to the gradient boosting tree (GBT) model. The results showed that the proposed 

ACO-GBT model produced good results in predicting customer churn. In [28], the author discussed the 

advantages of utilizing MA for churn prediction, specifically ACO for churn prediction. The findings confirmed 

that ACO is a powerful method for churn prediction. In [29], ACO is combined with RSA to boost its capacities 

as for churn prediction. Experimental results showed good performance of ACO-RSA. In [30], ACO-based 

feature selection is used to train gradient boosting tree for churn prediction,  

Although the literature showed several works use ACO as a FS method in the application of customer churn 

prediction, a systematic investigation of the effect of hyper-parameter tunning on the ACO for this application 

is not available. The current work aims to fill this gap by improving customer churn prediction using ACO 

hyper-parameter tuning. The core contributions of this work can be summarized as follows:  
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• To investigate the effect of hyper-parameter tuning on the performance of ACO when it used as a FS 

method  

• To assess the ACO improvement using three open-source customer churn prediction datasets  

• To quantize improvements in the ACO's performance in terms of CT, fitness value, accuracy, and fraction 

of selected features  

• To compare its efficiency and performance against other MAs 

Section two provides a briefly describes process of ACO, followed by the description of three datasets for 

customer churn prediction in section three. The tuned ACO and its hyper-parameters are presented in section 

four. Experimental results and statistical comparison with other state-of-the-art FS methods are given in section 

five. Finally, section six concludes the work. 

 

2. Ant Colony Optimization 

Initially known as Ant System, ACO is a population-based MA [18]. The attributes of ACO enhance its 

efficacy compared to other MAs by facilitating parallel processing, sidestepping process dependency, and 

providing valuable feedback on the behaviours of ants during the search process [31]. It applied a minimal 

change to other combinative stochastic optimization, and it can also apply the same versions to the problem 

without extra modifications. 

Ants try to find the shortest route between their nest and the food source. They leave a chemical material, 

known as pheromone, along their trail. The pheromone serves as a means of communication among the ants, 

indicating the shortest path to gather food. Initially, ants move randomly in search of food, smelling the 

chemical material deposited by ants with prior traversal along the path, thereby attracting other ants to follow. 

Therefore, the probability of that path will be increased since more ants traverse via that path [32]. 

Fig 1 explains the ants' behaviour while seeking food; the shortest path from the nest to the source is used 

for collecting food, as shown in Fig 1(a). The ants walk from the nest to the food source directly. Suddenly, an 

obstacle crosses the path with the yellow side longer than the blue side, as shown in Fig 1(b). The ants redirect 

the path to the food source. At first, ants walk in arbitrary directions and drop the pheromone on their way. The 

effort required to complete the path from the blue side is less than the yellow side; therefore, the pheromone 

quantity sensed by ants on the blue side is more than the yellow side. Thus, the number of ants walking through 

the blue side is more than the opposite side, which makes it more attractive for the next ants to follow, as shown 

in Fig 1(c). Finally, more ants travel the blue side, indicating the best-found solution and the preferable choice 

by the ants as the shortest path since it has a higher probability, as shown in Fig 1(d). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig 1. Process of path finding for ants: (a) original path between the nest and the food source, (b) path after 

introducing an obstacle having a larger yellow side than blue,  (c) when pheromone deposition on the blue side 

increases cumulatively, and (d) converged to the shortest path. 

 

An ACO-based FS method typically involves a graph, as shown in Fig 2. A fully connected graph facilitates 

the movement of ants from any feature Fi to feature Fj with the relationship between the features indicated as wij. 

For making probabilistic decisions, ACO uses heuristic information (evaluated fitness) and pheromone trail 

(founded solution). While traversing a path, ants crossing a feature increase the pheromone level deposited at 

that feature. This boosting enhances the likelihood of the feature being in the shortest path. An example of ant 

traversing the graph is shown in Fig 2. An ant is initially positioned at feature F1, it then chooses to move to F2 
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and then F4 based on the pheromone trail and heuristic information. Finally, upon arrival at F4, the OFS: {F1, 

F2, F4} is generated. 

 

Fig 2. Fully connected graph representation of ACO for FS. 

After randomly positioning ants on a set of features, the pheromone level is initialized 𝜏0 = 1 with 

maximum number generations G. A combination of both pheromone level 𝜏𝑖and heuristic information 𝜂𝑖 

represented classifier accuracy of ith feature for a class label of ith feature forms the "transition matrix" to move 

to the next possible feature.  

At every generation g, 𝑇𝑃𝑖
𝑘(𝑔) 𝑖𝑠 the transition probability of kth ant at ith feature, and it is calculated as [33]: 

𝑇𝑃𝑖
𝑘(𝑔) = {

[𝜏𝑖(𝑔)]𝛼[𝜂𝑖]𝛽

∑ [𝜏𝑖(𝑔)]𝛼[𝜂𝑖]𝛽
𝑗∈𝑗𝑖

𝑘

     if 𝑗 ∈ 𝑗𝑖
𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 1 

where 𝑗𝑖
𝑘 is a neighbours of ith features that the kth ant does not visit. The non-negative hyper-parameters. 𝛽 

and 𝛼 represent importance of heuristic information and pheromone level, respectively.  

After selecting the next feature along the path, the updated set of selected features undergoes evaluation 

by a fitness evaluator. In this work, a k-nearest neighbor (KNN) with five neighbours is used to evaluate the 

quality of selected features due to their popularity [34] and the capability to measure distances between 

numerical or categorical attributes [35]. The fitness value of select features 𝑆𝑘(𝑔)is calculated as: 

𝛾(𝑆𝑘(𝑔)) = 𝑤(1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) + (1 − 𝑤)
|𝑆𝑘(𝑔)|

𝑁
 2 

where w weights the classifier performance importance and the number of selected features |𝑆𝑘(𝑔)|. 

In this work, we decided to give higher importance to classifier performance by setting w = 0.99. The 

movement of kth ants can be stopped when the minimum number of features is visited, or no the fitness value 

does not improve with a new feature [18]. In this work, a minimum number of selected features is set to half of 

the total number of features as stopping criteria to avoid retaining more than 50% of the original features in the 
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dataset. At generation (g+1), pheromone level at ith feature is calculated as [36]: 

𝜏𝑖(𝑔 + 1) = (1 − 𝑝)𝜏𝑖(𝑔) + ∑ ∆𝜏𝑖
𝑘(𝑔)

𝐾

𝑘=1

 3 

where, 

∆𝜏𝑖
𝑘(𝑔) = {

𝛾(𝑆𝑘(𝑔)) |𝑆𝑘(𝑔))|⁄ ,           𝑖𝑓 𝑖 ∈ 𝑆𝑘(𝑔)

0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 4 

where the decay rate (0 ≤ 𝑝 ≤ 1) controls pheromone evaporation, and 𝛾(𝑆𝑘(𝑔)) is the fitness value of 𝑡he 

features subsets 𝑆𝑘(𝑔) found by kth ants at generation g. The kth ants' deposits pheromone ∆𝜏𝑖
𝑘 at traverses' ith 

feature, else no pheromone is deposited. 

The optimization stops when g reaches the maximum iterations G. Finally, when all the ants complete the 

path, the features are selected based on the smallest fitness value. The flow diagram process of the ACO as an 

FS method is shown in Fig 3. 

 

Fig 3. Flow diagram of ACO's general process  

 

Algorithm 1. Pseudocode for ACO-based FS method 

1. Begin 

2. Initialize the parameters of the ACO:  𝛼, 𝛽, 𝑝, 𝑚, 𝑤, 𝐺 

3. Let 𝑔 = 1 

4. for each feature i do 

5. 𝜏𝑖 = 𝜏0 

6. end for 

7. Place m ants randomly on a set of features with an initial pheromone level 

8. while g ≤ G do 

9. for each ant 𝑘 = 1, … , 𝑚do 
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10.  𝑆𝑘= { } 

11. while stopping criteria not reached do 

12. from the current feature, select the next features using Eq. 1 

13. add the selected feature to the subset 𝑆𝑘 

14. end while  

15. calculate fitness value using Eq. 2 

16. end for  

17. for each feature i do 

18. Update pheromone level using Eq. 3 and 4 

19. end for  

20. g = g+1 

21. end while  

22. Return set of selected features 𝑆𝑘 with highest 𝛾(Sk) as the OFS  

23. End  

 

3. Datasets 

Three datasets from the application of customer churn prediction are used, and their characteristics are 

provided in Table 1. 

Table 1. The characteristics of the datasets 

Dataset  Number of instances Number of features 

1 dataset-3 3333 21 

2 dataset 2 7043 21 

3 dataset-3 100,000 50 

 

 

Datasets are reprocessed with the step-by-step procedure as follows:  

I. The attributes that consist of unique values are ignored since they do not affect the model training 

process  

II. Categorical values {yes and no}, {true and false} are into converted into binary. 

III. Continuous values are normalization in the range 0–1 using a Linear transformation (L') as 

 
1http://www.sgi.com/tech/mlc/db/ 

 

2https://www.ibm.com/analytics/us/en/ 

 

3https://www.kaggle.com/abhinav89/telecom-customer/data 

 

http://www.sgi.com/tech/mlc/db/
https://www.ibm.com/analytics/us/en/
https://www.kaggle.com/abhinav89/telecom-customer/data
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5 

where 𝑚𝑖𝑛 is the old minimum value, 𝑚𝑖𝑛′ is the new minimum, 𝑚𝑎𝑥 is the old maximum, 𝑚𝑎𝑥′ is new 

maximum.  

4. ACO Hyper-Parameters Tuning 

Tuning of hyper-parameters is a vital step to increase the performance of the ACO algorithm. ACO has 

several hyper-parameters, including the relative importance of the pheromone value (𝛼), heuristic information 

(𝛽), pheromone decay factor (p) and the number of used ants in the population. The tuned values of these 

hyper-parameters will be obtained by minimizing the number of Selected Features (SF) and CT using the 

datasets provided in Table 1.   

4.1.  dataset-3 

4.1.1. Effect of 𝛼 and 𝛽  

The 𝛼 and 𝛽 together decide the transition probability for the ants' movements from one feature to another. 

In this work, we investigated a combination of 𝛼and𝛽for achieving the minimum number of SF and CT by 

varying each value over the range of 0–1.8, as shown in Fig 4. For lower values of α< 0.4, CT is very high. As 

the value of α > 1 increased, CT decreased with approximately a minimum of 6.03 seconds for α = 1.2 and β = 

1.2, 1.3. The range of SF with varying α and β values is 2–12, as shown in Fig 4 (b). Hence, the optimum 

αvalues are within the range of 1.3-1.6. and β within the range of 0–1.5. 

(a) 

 

(b) 
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Fig 4. Effects of varying combinations of α and β values on (a) CT and (b) SF. 

In order to choose optimal α and β values for the current task, we calculated the mean and standard deviation 

(std) of CT and SF using five generations for each value of α, as shown in Fig 5 [37]. It can be noted that α = 

1.4 has the least mean and std. The optimum value of β = 1.2 is selected by searching for minimum CT and SF 

across the column α = 1.4. Hence, we choose the optimum values as α = 1.4 and β = 1.2.  

 

Fig 5. Mean and std of CT and SF for different α range. 

4.1.2. Effect of number of used ants and pheromone decay factor  

The minimum population m and 𝑝 together decide the pheromone level on each path. The high number of 

m and low p will result in a high pheromone level on the optimum path but will increase CT. In this work, we 

investigated m and p combinations for the CT and the minimum SF, as shown in Fig 6. The CT for ACO with 

varying m and p over the range 1–200 and 0.86–1, respectively, are shown in Fig 6 (a). As estimated for the 

increasing number of 𝑚, the CT is also increasing significantly. Hence, the optimum solution must choose the 

minimum possible m. Fig 6 (b) shows SF with varying the number of ants and 𝑝 in the range 4–16.  

 

(a) 
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(b) 

 

Fig 6. Effects of varying combinations of 𝑚 and 𝑝 on (a) CT and (b) SF. 

 

To better decide optimum values for the m and p, we calculated the mean and std of SF for each value of 𝑝, 

as shown in Fig 7. It can be observed that 𝑝 = 0.87, 0.95, and 0.98 have the smallest mean with std. However, 𝑝 

= 0.95 shows the least number of SF with the smallest possible number of m. Hence, we choose the optimum 

values 𝑚 = 30 since accuracy does not increase by increasing m and p = 0.95 for dataset-3. 

 

Fig 7. Mean and standard deviation of CT and SF for varying 𝑝. 

The ACO optimum parameters for dataset-3 are provided in Table 2.  

Table 2. ACO optimal parameters for dataset-3 

Hyper-parameter Value 

α 1.4 

β 1.2 

p 0.95 

𝑚 30 



27 
  
 

 

Computational Journal of Mathematical and Statistical Sciences                                                     Volume 4, Issue 1, 17–40 

 

4.2.  dataset-3 

4.2.1. Effect of 𝛼 and 𝛽 

Fig 8 shows the effects of 𝛼 and 𝛽 values on the CT and SF. It can be observed from Fig 8(a) that for lower 

values of α< 0.6, CT is very high. As the value of α > 1 increased, CT decreased with an approximate minimum 

of 5.03 seconds for 𝛼 = 1.1 and 𝛽 = 1.7. The range of SF with varying α and β values is 4–16, as shown in Fig 8 

(b). Hence, the optimum 𝛼values are within the range of 1.2–1.6. and 𝛽 within the range of 0–1.5. 

(a) 

 

(b) 

 

Fig 8. Effects of varying combinations of 𝛼 and 𝛽 values on (a) CT and (b) SF. 

 

The mean and std of the CT and SF using five generations were calculated for each value of 𝛼 as shown in 

Fig 9. It can be noted that 𝛼 = 1.2 has the least mean and std. The optimum values of 𝛼 andβ are 1.2 and 1.2, 

respectively, for dataset-3.  
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Fig 9. Mean and std of CT and SF for different αrange. 

 

4.2.2. Effect of number of used ants and pheromone decay factor 

The CT for ACO with varying 𝑚 and 𝑝over the range 1–200 and 0.86–1, respectively, as shown in Fig 10 

(a). As estimated for the increasing number of m, the CT also increased. Fig 10 (b) shows SF with varying the 

number of ants and 𝑝 in the range 4–16.  

 

(a) 

 

(b) 
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Fig 10. Effects of varying combinations of m and 𝑝 (a) CT and (b) SF. 

It can be observed from Fig 11 that 𝑝 = 0.94 has the smallest mean and std. and the optimum value of m = 

60 is selected indataset-2. The tuned ACO hyper-parameters for dataset-3 are provided in Table 3. 

 

Fig 11. Mean and standard deviation of CT and SF for varying  𝑝. 

Table 3. ACO optimal parameters for dataset-3 

Hyper- parameter Value 

α 1.2 

β 1.2 

p 0.94 

𝑚 60 

 

4.3.  dataset-3 

4.3.1. Effect of α and β 

Fig 12 shows the effects of 𝛼 and 𝛽 values on the CT and SF. From both Fig 12 (a) and (b), the optimum 

αvalues are within the range of 1.1–1.3. and β within the range of 0–1.5, respectively. 

(a) 
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(b) 

 

Fig 12. Effects of varying combinations of α and β values on (a) CT and (b) SF. 

 

It can be observed from Fig 13 that α = 1.2 had the least mean and std. The optimum value of β = 0.8 is 

selected by searching for minimum CT and SF across the column α = 1.2. Hence, the optimum values asα = 1.2 

andβ = 0.8 are selected. 

 

Fig 13. Mean and std of CT and SF for different α values. 

4.3.2. Effect of number of used ants and pheromone decay factor 

The CT for ACO with varying 𝑚 and 𝑝 over the range 1–200 and 0.86–1, respectively, are shown in Fig 10 (a). 

As estimated for the increasing number of m, the CT is also increasing. Fig 14(b) shows SF with varying the 

number of ants and 𝑝 in the range of 25–45.  
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(a) 

 

(b) 

 

Fig 14. Effects of varying combinations of m and 𝑝 on (a) CT and (b) SF. 

 

In Fig 15, 𝑝 = 0.93 has the smallest mean and std as shown. However, 𝑝 = 0.93 shows the least number of 

SF with the smallest possible number of m. Hence, we choose the optimum values 𝑚 = 90 since accuracy does 

not increase by increasing m and 𝑝 = 0.93 for dataset-3. The ACO optimum parameters are provided in Table 

4for dataset-3. 

 

Fig 15. Mean and standard deviation of CT and SF for varying 𝑝. 

Table 4. ACO optimal parameters for dataset-3 
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Hyper-parameters Value 

α 1.2 

Β 0.8 

p 0.93 

𝑚 90 

 

5. Results and discussion  

In order to examine the effectiveness of the ACO as a FS method, the datasets provided in Table 1 are used 

and compared against other MAs. These comparative algorithms include PSO, MVO and FFA. Each dataset is 

divided randomly, where 50 % of the samples are used as a training dataset and the rest as a testing dataset. The 

ACO settings parameters provided in Tables 2, 3 and 4 are used for each dataset, and the maximum number of 

generations is set to G=100 for both the ACO and the other comparative methods. Then, the OFS obtained by 

the ACO and the other comparative methods from the training dataset are used as inputs to train and test SVM 

with radial basis function kernel (SVMrbf) classifier. The models are executed using Python on Windows 10 

machine with 32 GB RAM and 3.13 GHz processor. 

ACO and the other comparative methods are run 20 independent times as recommended by [30], and the 

average results are calculated. The results of the ACO and the other comparative methods in terms of accuracy 

are given in Table 4. The results of the number of features along with the OFS are provided in Table 5, while 

the results in terms of fitness values and CT are shown in Table 6. Accuracy, a fraction correctly classified test 

cases by a classifier, can be calculated as:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 

 6 

where True Positive (TP) and True Negative (TN) denote correctly identified churners and non-churners. False 

Positive (FP) is incorrectly classified churner and False Negative (FN) is incorrectly classified non-churner. 

 

Table 5 Average performance results in terms of accuracy 

Dataset PSO MVO FFA ACO 

 dataset-1 0.7251 0.7523 0.7723 0.8200 

 dataset-2 0.6675 0.7566 0.7538 0.7720 

 dataset-3 0.5322 0.5681 0.5838 0.6030 
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Table 6 The number of features and OFS for the comparative methods 

Dataset PSO MVO FFA ACO 

 dataset-1 

12 

(OFS:1,3,5,8,10,11,1

3,14,15,16,17,18) 

5 

(OFS:4,5,10,13,15) 

9 

(OFS: 

2,3,4,7,10,14,15,17,1

8) 

9 

(OFS: 

2,3,4,8,11,13,14,16,1

7) 

 dataset-2 
8 

(OFS:2,8,11,13,16,17,18,

19) 

6 

(OFS:2,5,7,11,12, 13) 

6  

(OFS:8,11,13,15, 18,19) 

6 

(OFS:2,9,10,15,16,19) 

 dataset-3 

35 (OFS:1,4,6,7,8,10, 

11,14,16,17,18,19, 

20,21,23,25,27,28, 

29,31,32,33,35,36, 

37,38,40,41,42,43, 

44, 46,47,48,49) 

32 (OFS:1,4,6,7,8,10, 

11,13,14,15,16,17, 

18,19,21,22,24,28, 

29,30,31,32,35,38, 

40,41,43,44,45,46, 

47,49) 

30 

(OFS:1,4,5,6,7,810,1

1,16,17,18, 19, 20, 

21,22,24,29,31,32, 

33,35,37,40,41,42, 

44,45,46,47,49) 

25 

(OFS:1,3,4,7,10,11,1

2,13,14,19,20,24, 

27,31,32,35,36,39, 

40,42,43,44,45,46, 

47) 

 

Table 7. Average performance results in terms of fitness for the comparative methods 

Dataset PSO MVO FFA ACO 

 dataset-1 0.2819 0.2526 0.2343 0.1861 

 dataset-2 0.3397 0.2487 0.2515 0.2332 

 dataset-3 0.4795 0.4427 0.4264 0.4060 

 

Table 8. Average performance results in terms of CT (in seconds) for the comparative methods 

Dataset PSO MVO FFA ACO 

 dataset-1 14.9085 14.3480 15.2210 11.2210 

 dataset-2 28.5087 28.5443 29.2910 23.2210 

 dataset-3 311.999 296.788 282.170 233.349 

 

In Table 5, the ACO gained the best average accuracy results compared to the other comparative FS methods 
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in all the used datasets. Also, the features selected using different FS algorithms are shown in Table 6. The 

number of features selected by ACO is smaller than other comparative methods. Although the number of 

selected features is almost the same, the actual selected features are different because of the difference in FS 

methods. 

The ACO outperformed the other methods in terms of fitness values with 0.1861, 0.2332, and 0.4060 for 

datasets 1–3, respectively, as shown in Table 7. This is mainly because the ACO is capable of balancing 

between exploration (i.e., pheromone level) and exploitation (i.e., heuristic information), which can be attained 

through the proper selection of α and β parameters.  

The ACO gets the lowest average CT among the other methods, which can be observed in Table 8. The CT 

is directly proportional to the number of examples and features. For example, MAs take higher CT due to more 

features and examples in dataset-3. However, the ACO takes lower CT compared to PSO, MVO and FFA 

methods because each ant in the ACO that passes optimal features is tagged so that other ants are attracted to 

follow the same path and therefore, the required CT to search all the feature space is minimized. As a result, the 

ACO reduces CT, and it can outperform the other methods in all the datasets used.  

Convergence behaviour is used to better understand the behaviour of the FS algorithms. Fig 16 shows the 

convergence behaviour of all the methods, variation of fitness values with the number of generations, after 20 

independent runs of MAs for each dataset. It can be observed in Fig 16 that the ACO has fast convergence 

speed and good local extremum avoidance proved by convergence analysis than the other methods. Also, ACO 

is constant after a few generations, indicating the robustness in selecting a maximum number of generations and 

avoiding local minima problem. For a small number of generations, PSO and FFA obtained good fitness values, 

while MVO get stuck in local minima problems.  

(a) 
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(b) 

 

(c) 

 
Fig 16. The convergence behavior plots: (a) dataset-1, (b) dataset-2, and (c) dataset-3 

The results in terms of the average accuracy and the FS methods using the datasets are shown in Fig 17. It 

can be observed from the box plots in Fig 17 that the generated dispersion degree (i.e., the spacing between the 

best, median, and worst) by the ACO method is lower than the other methods in all datasets, which indicates its 

stability compared to the other methods. This is because the parameters optimization for each dataset allows 

ACO to have a better balance between exploration and exploitation. This confirms the superiority of ACO over 

the other MAs. 
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(a) 

 

(b) 

 

(c) 

 

Fig 17. Box-plot for accuracy of the methods for (a) dataset-1, (b) dataset-2 and (c) dataset-3 

 

5.1. Statistical significance 

To further compare performance of the ACO and other comparative methods, Friedman's statistical test is 

employed to compute average ranking. The null hypothesis asserts that the comparative methods exhibit equal 

behaviour, while the alternative hypothesis suggests otherwise. Fig 18 illustrates the average ranking for all the 

methods using the accuracy results provided in Table 4, and the ACO is selected as the control method.  

Friedman's test calculates the p-value as 7.9405E-7, indicating a substantial difference between the other 
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methods. The results in Fig 18 validate that the ACO significantly performs better than PSO, MVO and FFA 

since it has the lowest rank.  

 

Fig 18. Average rankings of FS methods using the Friedman's test 

Here, the rankings computed by the Friedman test are used and the adjusted p-value between the ACO and other 

comparative methods is calculated by using Holm's method, as given in Table 9. From this table, it can be seen 

that there is a significant difference in the behaviour between the ACO, PSO, and MVO, while there is no 

significant difference in behaviour between the ACO and FFA. This confirms the capability of the tuned ACO 

as a FS method for the application of customer churn prediction. 

Table 9. Holm's method results among the ACO and other FS methods 

Rank Algorithm p-value Adjusted p-value Hypothesis 

3 PSO 0.0000 0.0000 Rejected 

2 MVO 0.0008 0.0041 Rejected 

1 FFA 0.0532 0.1595 Not-rejected 

 

6. Conclusion and future work 

FS is a typical problem in ML, and it is concerned with determining discriminating salient and redundant 

features from the whole set of features in a given dataset. This paper presents an improved FS method based on 

ACO. The effect of the ACO's hyper-parameters: Pheromone value, heuristic information, pheromone decay 

factor, and the number of ants, on the optimization process is tested. The optimization objective is measured by 

evaluating the prediction performance of selected features using the KNN. The efficiency of the improved 

method is evaluated using three open-source datasets for customer churn prediction. The performance of the 

improved method is also compared with three other FS methods, namely, PSO, MVO and FFA. Results 

showcased the superior capabilities of the tuned ACO in terms of fitness values, CT, accuracy, and selected 
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features, providing robust and statistically significant results than the other FS methods. In future work, we will 

attempt to use tuned ACO and test its effectiveness as a FS method in other different applications such as 

renewal energy, signal processing and big data.  
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