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1. Introduction and Motivation

Skewed distributions are a crucial concept in many fields of research and play very important roles
in modeling and analyzing of real lifetime in various fields of science and social sciences. For example,
income distribution in a population often follows a skewed distribution, with a few individuals earn-
ing significantly more than the majority. Understanding this skewness helps analysts identify income
inequality and inform economic policies. In economics the wealth distribution among individuals in
a country often exhibits a skewed distribution, with a small percentage of the population holding a
significant portion of the wealth. These understanding guides economic decisions and policies aimed
at reducing wealth disparities. In finance Stock prices and returns often follow a skewed distribution,
with extreme events like market crashes or sudden gains. Recognising this skewness helps investors
and analysts manage risk, optimize portfolios, and make informed investment decisions. In Biol-
ogy and Medicine, the spread of diseases like COVID-19 follows a skewed distribution, with a small
percentage of individuals accounting for a significant portion of transmissions. Understanding this
skewness guides public health decisions and contact tracing strategies. In Environmental Science Air
pollution levels in a city can follow a skewed distribution, with extreme events like peak pollution
days. Recognising this skewness helps policymakers develop targeted strategies to reduce pollution
and protect public health. In each of these fields, skewed distributions play a vital role in:

1. Identifying outliers and extreme events
2. Understanding asymmetric data
3. Informing decision-making and policy development
4. Optimizing processes and resource allocation
5. Developing effective solutions to real-world problems

However, despite the potential applications of skewed distributions in various fields of research, it
would be worth mentioning some of its limitations. Skewed distributions can be challenging to model
accurately, especially when data is limited. They are sensitive to outliers, which can significantly
impact analysis and modelling. They may not be representative of the entire population, limiting gen-
eralizability. Moreover, they can make hypothesis testing challenging due to non-normality, and can
be difficult to interpret, especially for non-technical audiences. Nevertheless, skewed distributions
can help model extreme weather events and climate change impact, complex ecosystem dynamics, in-
come inequality, economic risks and uncertainties, quality control and defect detection, predict disease
spread, data compression, image processing, machine learning, etc. By acknowledging and work-
ing with skewed distributions, professionals can develop more realistic models, make more informed
decisions, and derive meaningful insights in their respective fields by studying various systems of non-
normal or skew data and processes governing real-life phenomena. For some notable contributions and
recently developed distributions, one is referred to [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], and [13]. We define a skew distribution as follows:

DEFINITION – 1.1. Let be a random variable with pdf (probability density function) fX(). and cdf
(cumulative distribution function) FX().. Then Y is called a skew symmetric when

fY (y) = fX(y).w
[
FX(y)

]
, y ∈ R, (1.1)
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where w
[
FX(y)

]
∈ (0, 1) is a probability density function. Let w (x) = 2 FX

[
λ FX

−1(x)
]
. Then,

fY (y) = 2 fX(y).FX (λy) , (1.2)

where λ is a shape parameter ([12]). Let fX(.) = φ (.) and FX(.) = Φ (.), where ϕ (.) and Φ (.)
denotes the pdf and cdf of the standard normal distribution, N (0, 1), respectively. Then, from (1.2),
we have

fX (x ; λ) = 2 ϕ (x) Φ (λ x) , −∞ < x < ∞, (1.3)

(see [14]). Many well-known families of skew distributions developed by various authors are special
cases of the equations (1.1) and (1.2) ([14], [15], [16], [17], [18], [19],[20], [21], and [22]). Let X be a
non-negative continuous random variable. In this paper, we derive a skew product distribution (which
we call PREF distribution), pX (x) = C.gX(x).GX (x), where C is the normalizing constant, and gX(x)
and GX (x) denote the pdf and cdf of the Rayleigh and error function distributions, respectively.

The organization of this paper is as follows: In Section 2, we provide the derivations of our pro-
posed PREF distribution with several characteristics. Section 3 contains the estimation of parameters,
applications to two environmental datasets and simulation. In Section 4, characterizations are given.
Conclusions are outlined in Section 5. Some special functions and lemmas, used in the paper, are
provided in Appendix A.

2. Derivation of the PREF Distribution

2.1. The Rayleigh and error function distribution are defined as follows:

DEFINITION – 2.1. Let X be a non-negative continuous random variable. Then X is said to have
a Rayleigh distribution if its pdf and cdf are, respectively, given as

fX(x) =
( x
σ2

)
e− x2/2σ2

, x ≥ 0, σ > 0, (2.1)

and

FX(x) = 1 − e− x2/2σ2
. (2.2)

DEFINITION – 2.2. Let X be a non-negative continuous random variable. Then X is said to have an
error function distribution if it has its pdf and cdf, respectively, as follows:

fX(x) =
(

h
√
π

)
e− h2 x2

, x ∈ ℜ, h > 0, (2.3)

and

FX(x) =
1
2

[1 + Φ (h x)] , (2.4)

where Φ (.) denotes the error function.
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2.2. Expressions for the Normalizing Constant and PDF

Theorem 1: The equation pX (x) = C . gX(x) .GX (x) , x ≥ 0, C > 0, defines the pdf of the
PREF distribution if it has its normalizing constant given as follows:

C =
2
√

1 + 2 h2 σ2

√
1 + 2 h2 σ2 +

√
2 hσ

, h ≥ 0 , σ > 0. (2.5)

Without loss of generality, we assume that h ≥ 0 in equation (2.5).
Proof: Clearly, pX (x) ≥ 0, ∀ x ∈ [0, ∞), and C > 0. Hence for pX (x) to be a pdf, we must have∫ ∞

0
pX (x) dx = 1, (2.6)

where pX (x) = C . gX(x) .GX (x). Substituting (2.1) and (2.4) in (2.6), we have∫ ∞

0
C.

( x
σ2

)
e− x2/2σ2

.
1
2

[1 + Φ (h x)] dx = 1,

or, ∫ ∞

0

(
1

2σ2

)
x e− x2/2σ2

dx +
∫ ∞

0

(
1

2σ2

)
x e− x2/2σ2

. Φ (h x) dx =
1
C
. (2.7)

Let x2

2σ2 = t in (2.7). Then, we easily have∫ ∞

0

(
1

2σ2

)
x e− x2/2σ2

dx =
1
2
, (2.8)

and ∫ ∞

0

(
1

2σ2

)
x e− x2/2σ2

. Φ (h x) dx =
hσ

√
2
√

1 + 2 h2 σ2
. (2.9)

Using (2.8) and (2.9) in (2.7), the proof follows.
Theorem 2: For some non-negative continuous random variable X, if gX(x) and GX (x) denote the

pdf and the cdf of Rayleigh and the error function distribution, as defined in (2.1) and (2.4), respec-
tively, and C denotes the normalizing constant given by (2.5), the following equation

pX (x) = C . gX(x) .GX (x)

=

√
1 + 2 h2 σ2

√
1 + 2 h2 σ2 +

√
2 hσ

.
( x
σ2

)
e− x2/2σ2

. [1 + Φ (h x)] , h ≥ 0 , σ > 0,
(2.10)

defines a pdf of the random variable X.
Proof: The proof of Theorem 2 easily follows, since from Theorem 1, we have∫ ∞

0

( x
σ2

)
e− x2/2σ2

.
1
2

[1 + Φ (h x)] dx =

√
1 + 2 h2 σ2 +

√
2 hσ

2
√

1 + 2 h2 σ2
.

Special Case: For h = 0, the pdf in (2.10) reduces to the pdf of Rayleigh distribution given by (2.1).
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2.3. Derivation of the CDF

This sub-section derives the associated cdf of the random variable X, when the normalizing constant
C (> 0) satisfies the requirements for the product function pX (x) to be a probability density function,
as shown in Section 2.2.

Theorem 3: The cumulative distribution function (cdf), PX (x), corresponding to our proposed
product probability density function pX (x) = C . gX(x) .GX (x) , x ≥ 0, C > 0, where

C =
2
√

1 + 2 h2 σ2

√
1 + 2 h2 σ2 +

√
2 hσ

, h ≥ 0 , σ > 0,

is given by

PX (x) =
C
2

γ (
1,

x2

2σ2

)
+

√
2 hσ

√
2 h2 σ2 + 1

Φ

 √2 h2 σ2 + 1
√

2 σ
x
 − e−

x2

2 σ2Φ (h x)
 , (2.11)

PX (x) =
C
2

1 − e− x2/2σ2
+

√
2 hσ

√
2 h2 σ2 + 1

Φ

 √2 h2 σ2 + 1
√

2 σ
x
 − e−

x2

2 σ2Φ (h x)
 , (2.12)

where C is the normalizing constant given by (2.5).
Proof: We have

PX (x) =
∫ x

0
C. gX(t) .GX (t) dt =

∫ x

0
C.

( t
σ2

)
e− t2/2σ2

.
1
2

[1 + Φ (h t)] dt

=
C
2

∫ x

0

1
σ2 . t. e− t2/2σ2

dt +
C

2σ2

∫ x

0
t. e− t2/2σ2

. Φ (h t) dt. (2.13)

Now, by substituting t2
2σ2 = z in the first integral of the Equation (2.13), simplifying, and then using

Lemmas A.1.2 and A.1.3, it can easily be seen that

C
2

∫ x

0

1
σ2 . t. e− t2/2σ2

dt =
C
2
γ

(
1,

x2

2σ2

)
(2.14)

C
2

∫ x

0

1
σ2 . t. e− t2/2σ2

dt =
C
2

(
1 − e− x2/2σ2)

. (2.15)

Furthermore, in the second integral of the Equation (2.13), using Lemma A.2.4, and simplifying, we
have

C
2σ2

∫ x

0
t. e− t2/2σ2

. Φ (h t) dt =
C
2

 √
2 hσ

√
2 h2 σ2 + 1

Φ

 √2 h2 σ2 + 1
√

2 σ
x
 − e−

x2

2 σ2Φ (h x)
 .
(2.16)

Using (2.14), (2.15) and (2.16) in Equation (2.13), the proof of Theorem 3 follows.
Remark: In view of the following derivatives dγ (α, z)

dz = zα − 1e− z, and dΦ (z)
dz = 2

√
π
e−z2

, of the
incomplete gamma and error functions, respectively, it can easily be seen, by direct differentiation of
the expressions for the cdf in Equations (2.11) and (2.12), that dPX(x)

dx = pX (x).
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2.3.1. Some Plots of the PDF and CDF of the PREF Distribution

In this sub-section, we present some plots the PDF and CDF of the PREF distribution to discuss its
behaviors for some selected values of the parameters. The possible shapes of the pd f (2.10) and cd f
(2.12) for h = 2 and different values of σ, and for σ = 2 and different values of h, are provided in
Figures 1, 2, 3, and 4, respectively.

Figure 1. pd f , when h = 2 and σ = 0.5, 1, 2, 3

From the graphs in Figures 1, 2, 3, and 4, it is obvious that the proposed distribution is unimodal
and right skewed.

2.3.2. Hazard Function and Reliability Analysis of the PREF Distribution:

The hazard function (hf) of the PREF distribution is given by

h (x) =
pX (x)

1 − PX (x)

=

√
1 + 2 h2 σ2

√
1 + 2 h2 σ2 +

√
2 hσ

.
(

x
σ2

)
e− x2/2σ2

. [1 + Φ (h x)]

1 −
√

1 + 2 h2 σ2
√

1 + 2 h2 σ2 +
√

2 hσ

[
1 − e− x2/2σ2

+
√

2 hσ
√

2 h2 σ2 + 1
Φ

( √
2 h2 σ2 + 1
√

2 σ
x
)
− e−

x2

2 σ2Φ (h x)
] , (2.17)

where h ≥ 0 , σ > 0. For h = 2 and different values of σ, and for σ = 2 and different values of
h, the possible shapes of the hf (2.17) of our new proposed skew product distribution are provided in
Figures 5, and 6, respectively.

From the Figures 5, and 6, it is evident that the failure rate function, h (x), is increasing and concave
up shaped. Also, differentiating Equation (2.17) with respect to x, we have

h / (x) =
p/ (x)
p (x)

h (x) + [h (x)]2 , (2.18)
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Figure 2. pd f , when h = 0.25, 0.5, 1.25, 2 and σ = 2

Figure 3. cd f , when h = 2 and σ = 0.5, 1, 2, 3
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Figure 4. cd f , when h = 0.25, 0.5, 1.25, 2 and σ = 2.

for x ≥ 0, where p (x) and h (x) are given by Equations (2.10) and (2.17), respectively, and p/ (x)
could be obtained by differentiating Equation (2.10) with respect to x, that is,

p/ (x) =
(

1
σ2

)
e− x2/2σ2

. [1 + Φ (h x)]
(
1 −

x2

σ2

)
+

(
2 h
√
πσ2

)
x e− h2 x2

e− x2/2σ2
. (2.19)

In order to discuss the behavior of the failure rate function, h (x), let h / (x) = 0. We observe that the
nonlinear equation h / (x) = 0 does not have a closed form solution, but could be solved numerically
by using some computer software. It is obvious from the Equations (2.18) and (2.19) that h / (x) is
positive, provided x < σ, irrespective of the values of the parameters, h ≥ 0 , σ > 0. This shows
that our new proposed PREF distribution has the increasing failure rate (IFR) property.

2.4. Some Properties of the PREF Distribution:

This sub-section discusses some characteristics of the PREF distribution.

2.4.1. Moments

Theorem 4: For some integer k > 0, the kth moment of the random variable X having the pdf (2.10)
is given by

E
(
Xk

)
=

 2
√

1 + 2 h2 σ2

√
1 + 2 h2 σ2 +

√
2 hσ


×

2 k
2 − 1 σk Γ

(
k
2
+ 1

)
+

 h

2
√
π

(
1

2σ2

) (k + 1)
2


∞∑

j = 0

(− 1) j(
j + 1

2

)
( j!)
Γ

(
2 j + k + 3

2

) (√
2 hσ

)2 j

 .
(2.20)

Computational Journal of Mathematical and Statistical Sciences Volume 3, Issue 2, 432–453



440

Figure 5. h f , when h = 2 and σ = 0.5, 1, 2, 3

Proof: Using the expression for the pdf (2.10), we have

E
(
Xk

)
=

 2
√

1 + 2 h2 σ2

√
1 + 2 h2 σ2 +

√
2 hσ

 .∫ ∞

0
xk

{( x
σ2

)
e− x2/2σ2

.
1
2

[1 + Φ (h x)]
}

dx

=

 2
√

1 + 2 h2 σ2

√
1 + 2 h2 σ2 +

√
2 hσ

 . [∫ ∞

0
xk

(
1

2σ2

)
x e− x2/2σ2

dx +
∫ ∞

0
xk

(
1

2σ2

)
x e− x2/2σ2

. Φ (h x) dx
]
.

(2.21)

Now, by substituting x2

2σ2 = t in the first integral of the Equation (2.21), simplifying, and then using
the definition of the complete gamma function, we have∫ ∞

0
xk

(
1

2σ2

)
x e− x2/2σ2

dx = 2
k
2 − 1 σk Γ

(
k
2
+ 1

)
. (2.22)

Furthermore, using Lemma A.1.5 in the second integral of the Equation (2.21) and simplifying, we
have ∫ ∞

0
xk

(
1

2σ2

)
x e− x2/2σ2

. Φ (h x) dx =
(

1
2σ2

) ∫ ∞

0
xk + 2 − 1e− x2/2σ2

. Φ (h x) dx

=

 h

2
√
π

(
1

2σ2

) (k + 1)
2


∞∑

j = 0

(− 1) j(
j + 1

2

)
( j!)
Γ

(
2 j + k + 3

2

) (√
2 hσ

)2 j
. (2.23)

Using (2.22) and (2.23) in Equation (2.21), the proof of Theorem 4 easily follows.
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Figure 6. h f , when h = 0.25, 0.5, 1.25, 2 and σ = 2.

By taking k = 1 in Equation (2.20) and simplifying, the first moment (or the mean), α1, of the
PREF distribution is obtained as follows:

α1 = E (X) =
 2

√
1 + 2 h2 σ2

√
1 + 2 h2 σ2 +

√
2 hσ


×

2− 1
2 σΓ

(
3
2

)
+

 h

2
√
π

(
1

2σ2

) ∞∑
j = 0

(− 1) j(
j + 1

2

)
( j!)
Γ ( j + 2)

(√
2 hσ

)2 j
 . (2.24)

Similarly, using (2.20), it is easy to compute the jth (central) moment, variance, and coefficients of
skewness and kurtosis.

2.4.2. kth Incomplete Moment:

Theorem 5: For some integer k > 0, the kth incomplete moment of the random variable X having
the pdf (2.10) is given by

Ik (x) =
 √

1 + 2 h2 σ2

√
1 + 2 h2 σ2 +

√
2 hσ

 . [2 k
2 σk γ

(
k + 2

2
,

x2

2σ2

)
− xk e− x2/2σ2

Φ (h x)

+
h
√
π

(
h2 +

1
2σ2

)− ( k + 1
2 )

γ

(
k + 1

2
,

(
h2 +

1
2σ2

)
x2

) .
(2.25)
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Proof: Using the expression for the pdf (2.10), we have

Ik (x) =
 2

√
1 + 2 h2 σ2

√
1 + 2 h2 σ2 +

√
2 hσ

 .∫ x

0
tk

{( t
σ2

)
e− t2/2σ2

.
1
2

[1 + Φ (h t)]
}

dt

=

 √
1 + 2 h2 σ2

√
1 + 2 h2 σ2 +

√
2 hσ

 . [∫ x

0
tk

( t
σ2

)
e− t2/2σ2

dt +
∫ x

0
tk

( t
σ2

)
e− t2/2σ2

. Φ (h t) dt
]
.

(2.26)

Now, by substituting t2
2σ2 = u in the first integral of the above Equation (2.26), simplifying, and then

using Lemma A.1.2, we have∫ x

0
tk

( t
σ2

)
e− t2/2σ2

dt = 2
k
2 σk γ

(
k + 2

2
,

x2

2σ2

)
. (2.27)

where γ (.) denotes the incomplete gamma function. Furthermore, using Lemma A.1.6 in the second
integral of the above Equation (2.26) and simplifying, we have∫ x

0
tk

( t
σ2

)
e− t2/2σ2

. Φ (h t) dt =
(

1
σ2

) ∫ x

0
tk + 1 e− t2/2σ2

. Φ (h t) dt

= − xk e− x2/2σ2
Φ (h x) +

2 h
√
π

∫ x

0
tk e−

(
h2 + 1

2σ2

)
t2dt. (2.28)

Now, by substituting t2 = u in the integral of the above Equation (2.28), simplifying, and then using
Lemma A.1.2, we have∫ x

0
tk

( t
σ2

)
e− t2/2σ2

. Φ (h t) dt = − xke− x2/2σ2
Φ (h x) +

h
√
π

(
h2 +

1
2σ2

)− ( k + 1
2 )

γ

(
k + 1

2
,

(
h2 +

1
2σ2

)
x2

)
.

(2.29)

where Φ (.) denotes the error function, and γ (.) denotes the incomplete gamma function. Using
(2.27) and (2.29) in Equation (2.26), the proof of Theorem 5 easily follows.

2.4.3. Entropy

For a continuous real random variable X, we define it as follows:

H [X] = E
[
− ln ( fX (X)

]
= −

∫
S

fX (x) ln
[
fX(x)

]
dx,

where S = {x : fX (x) > 0}, [23]. Using this we obtain the following result:
Theorem 6: The entropy of the random variable X having the pdf (2.10) is given by

H [X] = − ln
( C
2σ2

)
− E (ln (X)) +

1
2σ2 E

(
X2

)
− E [ln (1 + Φ (h x))] ,

where C is the normalizing constant given by (2.5), andΦ (.) denotes the error function.
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Proof: We have

H [X] = E[− ln (pX (X))] = −
∫ ∞

0
pX (x) ln

[
pX(x)

]
dx

= −

∫ ∞

0

( C
2σ2

)
x e− x2/2σ2

. [1 + Φ (h x)] × ln
{( C

2σ2

)
x e− x2/2σ2

. [1 + Φ (h x)]
}

dx,

(2.30)

which, using (2.10) and moments, easily reduces to

H [X] = − ln
( C
2σ2

)
− E (ln (X)) +

1
2σ2 E

(
X2

)
− E [ln (1 + Φ (h x))] , (2.31)

where C is the normalizing constant given by (2.5), E
(
X2

)
is given by (2.31) when k = 2,

E [ln (1 + Φ (h x))] cannot be evaluated analytically in closed forms and so requires some quadra-
ture formulas for computations, and E (ln (X)) is derived as follows:

E (ln (X)) =
∫ ∞

0

( C
2σ2

)
x e− x2/2σ2

. [1 + Φ (h x)] . ln (x) dx

=

( C
2σ2

) [∫ ∞

0
x e− x2/2σ2

. ln (x) dx +
∫ ∞

0
x e− x2/2σ2

. Φ (h x) . ln (x) dx
]
,

which, on substituting x2 = u, simplifying, and then using Lemmas A1.7, A.1.8 and A.1.9, reduces
to

E (ln (X)) =
( C
2σ2

) (σ2

2

) {
ψ (1) + ln

(
2σ2

)}
+

(
1

2
√
π

) ∞∑
k = 0

2kh2 k + 1

(2 k + 1) !!

(
2σ2

1 + 2 h2 σ2

) 2 k + 3
2

Γ

(
2 k + 3

2

) {
ψ

(
2 k + 3

2

)
− ln

(
1 + 2 h2 σ2

2σ2

)} ]
,

where C is the normalizing constant given by (2.5), and Γ (.) and ψ (.) denote the gamma and psi
functions, respectively, (cf. [[24], 8.31, p. 933, and 8.36, p. 943]). Also, see [35]. This completes the
proof of Theorem 6.

2.4.4. Percentile Points

The percentage points xp of our proposed PREF distribution are computed by numerically solving
the equation F (xp) =

∫ xp

λ
fX(u) du = p (say), for any 0 < p < 1, for different sets of values of the

parameters, which are provided in Table 1 as follows:

3. Characterizations

A probability distribution can be characterized through various methods [25], [26], [27], [28], [29],
[30], and [31]. In this section, we provide the characterization of our proposed product distribution
by the left and right truncated moment methods in Theorems 3.1 and 3.2. For this, we will need the
following assumption and lemmas.
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Table 1. Percentile Points of PREF Distribution

Percentiles p 0.75 0.80 0.85 0.90 0.95 0.99
h = 0.25, σ = 2 xp 2.93928 3.26727 3.70443 4.34327 5.48245 8.27443
h = 0.5, σ = 2 xp 3.64562 4.28976 5.17756 6.51398 8.96187 15.10587
h = 1.25, σ = 2 xp 4.06721 4.91374 6.09339 7.88452 11.18757 19.51993

h = 2, σ = 2 xp 4.53702 5.61670 7.13374 9.45117 13.74370 24.60521
σ = 0.5, h = 2 xp 1.43344 1.48370 1.54484 1.62580 1.75436 2.02480
σ = 1, h = 2 xp 1.68344 1.73370 1.79484 1.87580 2.00436 2.27480
σ = 2, h = 2 xp 1.93344 1.98370 2.04484 2.12580 2.25436 2.52480
σ = 3, h = 2 xp 2.18343 2.23370 2.29484 2.37580 2.50436 2.77480

Assumptions 3.1. Suppose the random variable X is absolutely continuous with the cumula-
tive distribution function F(x) and the probability density function f (x). We assume that ω =

inf { x | F (x) > 0 }, and δ = sup { x | F (x) < 1 }. We also assume that f (x) is a differentiable
for all x, andE(X) exists.

Lemma 3.1. Under the Assumption 3.1, if E (X | X ≤ x) = g (x) τ (x), where τ (x) = f (x)
F (x)

and g (x) is a continuous differentiable function of x with the condition that
∫ x

0
u − g/(u)

g(u) du is finite for

x > 0, then f (x) = c e
∫ x

0
u − g/(u)

g (u) du, where c is a constant determined by the condition ∫
∞

0 f (x)dx = 1.
Proof. For proof, see [32].
Lemma 3.2. Under the Assumption 3.1, if E (X | X ≥ x) =

∼
g (x) r (x), where r (x) = f (x)

1 − F (x)

and
∼
g (x) is a continuous differentiable function of x with the condition that

∫ ∞
x

u +
[
∼
g (u)

]/
∼
g (u)

du is finite

for x > 0, then f (x) = c e
−

∫ x
0

u +
[∼
g (u)

]/
∼
g (u)

du
, where c is a constant determined by the condition

∫
∞

0 f (x)dx = 1.
Proof. For proof, see [32].
Theorem 3.1: Suppose the random variable X is absolutely continuous with the cumulative distri-

bution function P(x), given by (2.12), and the probability density function p(x), given by (2.10). We
assume that ω = inf {x | P (x) > 0}, and δ = sup {x | P (x) < 1}. We also assume that p(x) is a
differentiable for all x, andE(X) exists. We assume that ω = λ and δ = ∞, where 0 < λ < +∞.
Then, E (X | X ≤ x) = g (x) η (x) ,where η(x) = p (x)

P (x) , and

g (x) =

[√
2σγ

(
3
2 ,

x2

2σ2

)
− x e− x2/2σ2

Φ (h x) + h
√
π

(
2σ2

2σ2 h2 + 1

)
γ

(
1,

(
h2 + 1

2σ2

)
x2

)]
(

x
σ2

)
e− x2/2σ2 . [1 + Φ (h x)]

, (3.1)

if and only if X has the pdf

p (x) =

√
1 + 2 h2 σ2

√
1 + 2 h2 σ2 +

√
2 hσ

.
( x
σ2

)
e− x2/2σ2

. [1 + Φ (h x)] , h ≥ 0 , σ > 0. (3.2)

Proof: Following [32], the proof easily follows.
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Theorem 3.2: Suppose the random variable X is absolutely continuous with the cumulative distri-
bution function P(x), given by (2.12), and the probability density function p(x), given by (2.10). We
assume that ω = inf {x | P (x) > 0}, and δ = sup {x | P (x) < 1}. We also assume that p(x) is a
differentiable for all x, andE(X) exists. We assume that ω = λ and δ = ∞, where 0 < λ < +∞.
Then E (X |X ≥ x ) = r (x) p (x)

1 − P (x) , where

r (x) =
(E (X) − g (x) p (x))

p (x)

, g (x) being given by E (X) being given by the Equation (2.24), if and only if X has the pdf

p (x) =

√
1 + 2 h2 σ2

√
1 + 2 h2 σ2 +

√
2 hσ

.
( x
σ2

)
e− x2/2σ2

. [1 + Φ (h x)] , h ≥ 0 , σ > 0.

Proof. Following [32], the proof easily follows.

4. Estimation of Parameters, Applications and Simulation

In this section, we provide the estimation of the parameters of the PREF distribution.

4.1. The Method of Moments:

If {Xi}
n
i = 1 be an iidsample from a distribution with a m-dimensional parameter vector ϕ, then, ac-

cording to the method of moment (MOM), the estimator
∼

ϕ is the solution of the following system of
equations:

E∼
ϕ

(
X j

)
=

∑n
i = 1 Xi

j

n
, j = 1, 2, 3, . . . , m. (4.1)

Thus, using the above-mentioned definition (4.1) of the method of moments (MOM), we can obtain
the respective moments from the Equation (2.20) of the jthmoment, E

(
X j

)
, of our proposed prod-

uct distribution by taking the respective values of j, j = 1, 2, that is, E (X), see Equation (2.24),
and E

(
X2

)
, and evaluating the respective expressions of the respective moments numerically. Then,

the moment estimations of the respective parameters of our proposed product distribution can be de-
termined by solving the system of respective equations thus obtained by Newton-Raphson’s iteration
method, and using some computer packages like Maple, or Mathematica, or R, or MathCAD, or other
software.

4.2. The Method of Maximum Likelihood

The estimation of the parameters of our proposed PREF distribution is carried out by using the
method of maximum likelihood (MLE). Given a sample { xi }, i = 1, 2, 3, . . . , n, the likelihood
function of the PREF distribution pdf (2.10) is given by L =

∏n
i = 1 p ( xi ), that is, .

L =
n∏

i = 1

√
1 + 2 h2 σ2

√
1 + 2 h2 σ2 +

√
2 hσ

.
( xi

σ2

)
e− xi

2/2σ2
. [1 + Φ (h xi)] . (4.2)

Computational Journal of Mathematical and Statistical Sciences Volume 3, Issue 2, 432–453



446

Table 2. Descriptive Summary of the Data Sets

Data Sets Sample
Size

Mean Median Standard Deviation Skewness Kurtosis Skewness Kurtosis

I 50 12.3200 10.5000 6.0826 1.0511 4.0556 0.2592

II 102 2.3990 2.4000 0.7767 0.2749 3.5998 0.0763

The objective of the likelihood function approach is to determine those values of the parameters that
maximize the function L given by (4.2). Suppose its log-likelihood function is given by

R = ln ( L ) =
n∑

i = 1

ln
 √

1 + 2 h2 σ2

√
1 + 2 h2 σ2 +

√
2 hσ

.

(
1
σ2

)
−

n∑
i = 1

xi
2

2σ2 +

n∑
i = 1

ln [(1 + Φ (h xi))] +
n∑

i = 1

ln (xi)

(4.3)

Differentiating the Equation (4.3) partially with respect to the respective parameters, h and σ, re-
spectively, the maximum likelihood system of equations will be given by

∂R
∂ h = 0 ,
∂R
∂σ
= 0

]
. (4.4)

The maximum likelihood estimates (MLE) of the parameters {h , σ} can be obtained by solving the
maximum likelihood system of equations (4.4) numerically by Newton-Raphson’s iteration method
using some computer software like Maple, or Mathematica, or R, or MathCAD, or other software.

4.3. Applications

In this sub-section, by considering four real-life data sets, the goodness of fit tests of the PREF
distribution is provided by comparing it with some well-known skew distributions.

Dataset I [[33], p. 31]: The following data represent the length of life, in seconds, of 50 fruit flies
subject to a new spray in a controlled laboratory experiment with the observations: 17, 20, 10, 9, 23,
13, 12, 19, 18, 24, 12, 14, 6, 9, 13, 6, 7, 10, 13, 7, 16, 18, 8, 13, 3, 32, 9, 7, 10, 11, 13, 7, 18, 7, 10, 4,
27, 19, 16, 8, 7, 10, 5, 14, 15, 10, 9, 6, 7, 15.

Dataset II (Source: is https: //www.emsc − csem.org/Earthquake/Europe): The following data
sets show the 102 Magnitudes of the latest Earthquakes in Euro-Mediterranean region. The magnitudes
are 2.1, 1.9, 2.3, 1.8, 2., 1.6, 1.5, 2.8, 2.9, 1.5, 2.2, 3.4, 2.8, 3.1, 1.6, 0.6, 0.5, 1.7, 2.0, 0.8, 2.9, 4.7, 1.6,
1.6, 2.7, 1.7, 1.5, 4.3, 3.0, 2.6, 3.3, 2.6, 2.6, 3.1, 1.3, 2.8, 2.8, 0.7, 1.2, 1.9, 2.6, 2.0, 2.7, 2., 1.9, 3.0,
2.7, 2.8, 2.4, 2.4, 3.1, 3.1, 2.0, 1.8, 2.1, 1.8, 2.9, 3.2, 2.3, 2., 2., 2.9, 2.1, 2.5, 1.8, 1.8, 1.9, 3.1, 2.7, 3.7,
4.1, 2.4, 1.6, 2.9, 2.5, 2.2, 2.3, 2.1, 2.4, 2.7, 2.7, 2.3, 1.9, 2.3, 2.2, 4.2, 2.1, 2.1, 2.0, 2.6, 3.3, 4.0, 3.1,
2.8, 2.5, 3.1, 1.8, 2.9, 1.2, 4.0, 2.6, 2.5

The descriptive and theoretical statistics of datasets are portrayed in Table 2 and Table 3, respec-
tively.

Analytical Discussion About Data Set I: Descriptive features like sample size, mean, median,
standard deviation, skewness, kurtosis, and the ratio of Skewness/ Kurtosis, which reveals close co-
ordination between descriptive and theoretical results as given in Tables 2 and 3, respectively. The
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Table 3. Theoretical Summary of the Data Sets

Data Sets SampleSize Mean Median StandardDeviation Skewness Kurtosis Skewness /Kurtosis
I 50 9.2342 8.4130 4.4156 0.1145 3.3659 0.0340

II 102 1.9526 1.0567 0.5433 0.1047 2.3547 0.0445

Table 4. Goodness-of-Fit measure based on listed MLEs for the Data Set I

Distribution ĥ σ̂ X2 A∗0 W∗
0 KS P − Value

Proposed 0.54412 9.9204 4.5308(5) 0.8023 0.1199 0.1355 0.8135
Rayleigh 9.6963 - 5.028(6) 1.1004 0.1641 0.1527 0.6833
Maxwell 7.9171 - 6.9284(6) 1.6024 0.1680 0.1610 0.6183
Weibull 2.1793 13.9628 4.693(5) 1.1234 0.1437 0.1486 0.7155
Lindley 0.15164 - 6.1583(5) 1.4152 0.2692 0.1745 0.5137
Frechet 1.9857 8.5541 6.4047(5) 1.4579 0.2354 0.19234 0.3897

proposed model has a minimum value of χ2 goodness of-fit statistic compared to the rest of the model’s
values. The proposed model has also, the least value of A∗0 , W∗

0 and , KS statistic and highest p-value
(See Table 4) with minimum loss of information criterion (see Table 5) supports the suitability of the
suggested model. In addition, to draw a valid conclusion for the Data Set I, we have grouped the ob-
servation by using R as [3, 7], (7, 8], (8, 10], (10, 13], (13, 15], (15, 18], (18, 32] and the frequencies
are 13, 2, 10, 8, 4, 6, 7, respectively. Moreover, Tables 3 and 4 shows that the developed model is the
most suitable one, with the least values for all statistics and the highest p-value for χ2.

The following histogram (Figure 7) also supports the suitability of the suggested model (PREF) for
Data Set I.

Analytical Discussion about Data Set II: For Data Set II to draw a valid conclusion, we have
grouped the observation by using R as [0.5, 1.6],(1.6, 1.8], (1.8, 2], (2, 2.1],(2.1, 2.4], (2.4, 2.6],
(2.6, 2.8], (2.8, 2.9], (2.9, 3.19], (3.19, 4.7] and the frequencies are 15, 8 ,13, 6, 12, 10, 12, 6, 9, 11,
respectively. Moreover, the results shown in Tables 6 and 7 confirm the authenticity of the proposed
model (PREF).

The following histogram (Figure 8) also supports the suitability of the suggested model (PREF) for
Data Set II.

Table 5. Information Criterion for the Data Set I (Model’s Information Adaptability in Data
Set I)

Distribution − l AIC AICC BIC HQIC CAIC
Proposed 127.594 259.188 259.443 263.012 257.916 259.443
Rayleigh 157.425 316.85 316.934 318.762 317.578 316.934
Maxwell 157.142 316.285 316.368 318.197 317.013 316.368
Weibull 157.104 318.208 318.463 322.032 316.936 318.463
Lindley 164.498 330.995 331.079 332.907 331.723 331.079
Frechet 160.132 324.264 324.519 328.088 322.992 324.519
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Figure 7. Histogram of Data Sets I for PREF

Table 6. Goodness-of-Fit measure based on listed MLEs for the Data Set II

Distribution ĥ σ̂ X2 A∗0 W∗
0 KS P − Value

Proposed 0.8315 1.9162 12.618(7) 0.2405 0.02897 0.06149 0.9997
Rayleigh 1.7822 - 31.910(7) 1.0661 0.2099 0.1276 0.6742
Maxwell 1.4551 - 17.132(7) 0.9788 0.1301 0.1108 0.8269
Weibull 3.3226 2.6668 12.420(7) 2.3865 0.1746 0.1361 0.5937
Lindley 0.6669 - 80.091(4) 2.7892 0.5074 0.2241 0.0805
Frechet 1.9731 1.8284 40.038(7) 2.5091 0.1362 0.1438 0.5226

Figure 8. Histogram of Data Sets II for PREF
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Table 7. Information Criterion for the Data Set II (Model’s Information Adaptability in Data
Set II)

Distribution − l AIC AICC BIC HQIC CAIC
Proposed 108.919 221.839 221.960 227.089 220.902 221.960
Rayleigh 136.900 275.799 275.839 278.424 276.862 275.839
Maxwell 124.852 251.704 251.744 254.329 252.767 251.744
Weibull 119.214 242.428 242.549 247.677 241.490 242.549
Lindley 175.945 353.889 353.929 356.514 354.952 353.929
Frechet 157.949 319.899 320.020 325.149 318.962 320.020

4.4. Simulation Study

Simulation studies with 1000 replications are carried out in this section. Stochastic variate X fol-
lowing PRE (h, σ) is generated using the following four sets of parameters. Set-I, h = 0.9856 and σ =
0.2178; Set-II, h = 0.2256 and σ = 2.4698, Set-III, h = 0.1156 and σ = 5.2658 and Set-IV, h = 1.2156
and σ = 4.1658. We use samples of sizes n = 15, 25, 50, 100, 150, and 250 and estimated the MLEs by
using Mathematica 8.0. As shown in Table 8, both bias and MSE of the MLEs tend to zero as sample
size increases.

5. Conclusion

In this paper, we have derived the exact distribution of the product of the probability density function
of Rayleigh distribution and cumulative distribution of the error function for some

continuous random variable X, which we called as the PREF distribution. Various characteristics
of the PREF distribution are presented. We have used two environmental data sets to illustrate the
applications of proposed distribution, which model skewed distribution effectively. Thus, by acknowl-
edging the limitations and leveraging the applications of the proposed PREF distribution, researchers
and practitioners can better understand and analyse complex phenomena in various fields, deriving
informed decision-making and innovation.
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APPENDIX A
A.1 Some Useful Lemmas
The following Lemmas have been used to complete the derivations.
Lemma A.1.1 [[24], 6.283.2, p. 649].
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Table 8. Simulation Study

Parameter n Bias (h) Bias (σ) MSE (h) MSE (σ)

Set-I

n = 15 0.000012500 0.075302000 0.000264000 0.002977000
n = 25 0.000003120 0.056778100 0.000139000 0.001368000
n = 50 0.000001950 0.031789300 0.000069000 0.000328000
n = 100 0.000001610 0.001336800 0.000013000 0.000169000
n = 150 0.000000930 0.000163100 0.000000000 0.000043000
n = 250 0.000000100 -0.007214000 0.000000000 0.000023000

Set-II

n = 15 0.000005680 0.184670000 0.000000130 0.084300000
n = 25 0.000004900 0.091150000 0.000000090 0.077160000
n = 50 0.000002610 0.004560000 0.000000060 0.071212000
n = 100 0.000001300 0.000315000 0.000000020 0.043046000
n = 150 0.000000000 0.000011300 0.000000000 0.004741000
n = 250 0.000000000 0.000010000 0.000000000 0.001121000

Set-III

n = 15 0.000000000 0.018467000 0.000000050 0.042668060
n = 25 0.000000000 0.011150000 0.000000030 0.031651600
n = 50 0.000000000 0.004560000 0.000000020 0.015902120
n = 100 0.000000000 0.002315000 0.000000010 0.004210000
n = 150 0.000000000 0.000113000 0.000000000 0.002136000
n = 250 0.000000000 0.000010000 0.000000000 0.000101000

Set-IV

n = 15 0.000000000 0.000000760 0.000000000 0.077860000
n = 25 0.000000000 0.000000680 0.000000000 0.063723000
n = 50 0.000000000 0.000000490 0.000000000 0.051441000
n = 100 0.000000000 0.000000340 0.000000000 0.001456000
n = 150 0.000000000 0.000000100 0.000000000 0.002347000
n = 250 0.000000000 0.000000000 0.000000000 0.004202000

For Re (p) > 0, Re (q + p) > 0,
∫ ∞

0
Φ

(√
q t

)
e− p tdt =

√
q

p
1

√
p + q , where Φ (.) denotes the error

function.
Lemma A.1.2 [[24], 3.381.1, p. 317].
For ν > 0,

∫ u

0
xν − 1 e− µ xdx = µ− ν γ (ν, µ u), where γ (.) denotes the incomplete gamma function.

Lemma A.1.3 [[24], 8.352.1, p. 940].For n = 0, 1, . . ., γ (1 + n, z) =

(n! )
[
1 − e− z

(∑n
m = 0

zm

m!

)]
.

Lemma A.1.4 [[34], Vol. 2, 1.5.3.9, p. 32].∫
x e− b2 x2

Φ (a x) dx =
a

2 b2
√

a2 + b2
Φ

(√
a2 + b2 x

)
−

e− b2 x2

2 b2 Φ (a x) ,

where Φ (.) denotes the error function.
Lemma A.1.5 [[34], Vol. 2, 2.8.1.5, p. 93]. For r > 0, Re (p) > 0,

∣∣∣arg (c)
∣∣∣ < π

4 , Re (α) > −1
2 ,∫ ∞

0
xα − 1 e− p xr

Φ (c x) dx =
[

c
√
π p

(α + 1)
r r

] ∑∞
k = 0

(− 1)k

(k + 1
2 ) (k!)

Γ
(

2k + α + 1
r

) (
c

p
1
r

)2k
,

where Φ (.) denotes the error function.
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Lemma A.1.6 [[34], Vol. 2, 1.5.3.1, p. 31].∫
xλ e− b2 x2

Φ (a x) dx = −
1

2 b2 xλ − 1 e− b2 x2
Φ (a x)

+
a

b2
√
π

∫
xλ − 1 e− (a2 + b2) x2

dx +
λ − 1

2 b2

∫
xλ − 2 e− b2 x2

Φ (a x) dx,

where Φ (.) denotes the error function.
Lemma A.1.7 [[24], 4.331.1, p. 573, and 8.367.1, p. 946].

∫ ∞
0

e− µ x ln (x) dx = 1
µ

[
ψ (1) − ln (µ)

]
,[

Re µ > 0
]
,where ψ (1) ≈ − 0.577216 denotes Euler’s constant.

Lemma A.1.8 [[24], 8.253.1, p. 931]. Series representation of the error function Φ (.): Φ (x) =(
2
√
π

)
e− x2 ∑∞

k = 0
2k x2 k + 1

(2 k + 1) !! .

Lemma A.1.9 [[24], 4.352.1, p. 576].
∫ ∞

0
xν − 1 e− µ x ln (x) dx = 1

µν
Γ (ν)

[
ψ (ν) − ln (µ)

]
,[

Re µ > 0, Re ν > 0
]
.
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