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Abstract: This paper introduces a new, straightforward test for analyzing the symmetry of data rep-
resented in frequency distributions. Unlike other methods, this test doesn’t require any assumptions
about the underlying statistical distribution of the data. The only prerequisite is that the data has equal-
sized categories (bins) and none of these categories have a frequency of zero. This makes the test both
statistically robust and computationally efficient. In simpler terms, the test offers a user-friendly way to
assess whether a data set leans towards one side or the other (positive or negative skew) without relying
on specific statistical models. The test relies on a statistic denoted by G, which was introduced by [1].
We introduce and study the properties of G statistic and obtain its mean and variance. We explore
the Asymptotic distribution of the G Statistic. Finally, a worked example and a practical example is
presented to illustrate how the test is implemented.
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1. Introduction

Many statistical approaches assume that data follow a normal distribution. However, many such
processes are resistant to breaches of normality; therefore, having data from a symmetric distribution
is often sufficient for their validity. Other processes, such as non-parametric methods, use symmetric
distributions instead of normal distributions. The existence or lack of symmetry is also an essential
consideration when determining which parameter to estimate. According to [2] and [3], if the distri-
bution is symmetric, the point of symmetry (µ) is the sole natural measure of position. However, if
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the distribution is non-symmetric, there is no longer a single fair measure of location. Thus, there are
several reasons to investigate the existence or lack of symmetry, and the subject of verifying symmetry
has received significant attention in the literature. Furthermore, most parametric, and distribution-free
methods of testing symmetry that have appeared in the literature have been developed for ungrouped
data (see [4], [5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15]).

Some authors propose non-normality robust test for skewness. Non-parametric tests for symmetry
were developed by [16], based on kernel estimation techniques. Data-driven smooth tests of symmetry
have been proposed by [17]. Consistent non-parametric statistical tests of symmetry hypotheses were
proposed by [18], based on Cramér–von Mises statistics computed from empirical distribution and
characteristic functions.

The literature on testing symmetry gives very little guidance on how to test the non-parametric sym-
metry of a frequency distribution. Many statistical methods rely on the assumption of a normal or at
least a symmetric distribution. However, real-world data often deviates from these ideal distributions.
While these methods are valuable, they are not readily applicable to data presented in frequency dis-
tributions, which are common in many fields. The main concern of this paper is to propose a novel,
distribution-free test specifically designed to analyze the symmetry of grouped data (frequency distri-
butions). This new approach offers several advantages:

1- No assumptions about underlying distribution: Unlike existing methods, our test doesn’t
require specific assumptions about the underlying statistical distribution of the data. This makes it
more robust and applicable to a wider range of datasets.

2- Computational efficiency: The test is designed for efficiency, requiring only data with equal-
sized categories (bins) and no zero frequencies. This simplifies calculations and makes the test practical
for real-world applications. In simpler terms, our test provides an easy way to assess data skewness
(positive or negative) without relying on complex statistical models. This makes it accessible to re-
searchers from various disciplines.

We introduce and explore the properties of the G statistic, a key component of the test, introduced
by [1]. We derive the mean, variance, and asymptotic distribution of the G statistic, which are critical
for statistical inference. We illustrate the implementation of the test through a worked example and a
practical example, demonstrating its real-world application.

The rest of the paper is organized as follows. We introduce and study the properties of G statistic in
Sections 2 and 3, respectively. Testing Symmetry of a Frequency Distribution is discussed in Section
4. Worked example is employed in Section 5. Finally, Section 6 concludes this paper.

2. Proposed Measure of Skewness

A new measure of skewness for frequency distributions was introduced by [1]. This measure is
based on the G statistic. For a symmetrical frequency distribution, let:

C is the classes number,

fi is the ith class frequency, i=1,2,3. . . ,C.

Fi is the ith class cumulative frequency , as calculated by adding its frequency to the frequencies of
all classes below it.
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The G statistic is used to determine the suggested skewness measure and is defined as follows:

G =
C∑

i=1

Fi.

The G statistic is based on the fact that the frequency distribution contains equal classes, with no
class having a frequency of zero.

Some properties of G Statistic:
We now explore some properties of G statistic that will be utilized to define the proposed skewness

measure, which will be represented by (S KA).

Theorem 2.1. The lowest and greatest values of G, for a frequency distribution with equal classes
and fi , 0; i = 1, 2, . . . ,C are provided by:

GL =
C(C − 1)

2
+ f and GH =

C(C − 1)
2

+C( f −C + 1),

where C is the number of classes, f =
∑C

i=1 fi.

Proof. The lowest value of G, GL, is obtained when each of the first (C-1) classes has a frequency of
one and the last class has a frequency of ( f −C + 1), that is, when:

fi = 1, for i = 1, 2, . . . , (C − 1),

and

fc = f −C + 1.

That is,

GL =

C∑
i=1

Fi =

C−1∑
i=1

Fi + FC =

C−1∑
i=1

i + FC.

Since FC = f , then

GL =
C(C − 1)

2
+ f . (2.1)

The highest value of G, GH, is achieved when:

f1 = f −C + 1, and fi = 1 for i = 2, 3, . . . ,C.
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That is,

GH =

C∑
i=1

Fi =

C−1∑
i=1

i +
C∑

i=1

( f −C + 1),

then,

GH =
C(C − 1)

2
+C( f −C + 1). (2.2)

Theorem 2.2. The value of G statistic for a symmetrical frequency distribution is always equal to
f (C + 1)/2.

Proof. For any frequency distribution, G statistic may be represented as follows:

G =
C∑

i=1

i fc−i+1. (2.3)

Given that fi = fc−i+1 for a symmetrical distribution, G statistic may alternatively have the formula:

G =
C∑

i=1

i fi. (2.4)

Summing (2.3) with (2.4) yields the following:

2G =
C∑

i=1

i ( fi + fC−i+1) ,

= ( f1 + fC) + 2 ( f2 + fC−1) + 3 ( f3 + fC−2) + · · · +C ( fC + f1) ,
= (C + 1) f .

That is,

G =
f (C + 1)

2
(2.5)

Corollary 2.1. The value of G statistic for a symmetrical distribution may be calculated using GL

and GH as follows:

G =
(GL +GH)

2
. (2.6)
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Proof. Using theorems 2.1 and 2.2, equation (2.6) comes as a consequence of (2.1), (2.2) and (2.5).

Now, using formulas (2.1), (2.2), (2.5), and (2.6), the proposed coefficient of skewness (S KA) is
defined so that it has the value limits between ±1. That is,

S KA =
2Gob − f (C + 1)

GH −GL
,

S KA =
2Gob − f (C + 1)
( f −C)(C − 1)

, (2.7)

where Gob is the observed value of G statistic for the frequency distribution.

The suggested coefficient of skewness is based on the idea that the bigger the value of Gob, the
more probable it is that the majority of items are of low value, providing stronger evidence that the
frequency distribution is positively skewed and vice versa. Furthermore, the value of Gob that is closest
to f (C + 1)/2 increases the likelihood that the frequency distribution is symmetrical.

As with different measures of skewness, this measure will be zero for symmetrical distributions,
positive for right skewness, and negative for left skewness. Furthermore, according to this measure,
skewness falls within the limits of ±1 (See [1]).

The asymptotic distribution of the G statistic, as defined in (2.3), is determined in this paper to be
used for testing whether or not the value of skewness of a frequency distribution, as determined by
(2.7) differs significantly from zero.

3. The Mean and Variance of the G Statistic

Determining the mean and variance of the G statistic requires first obtaining the mean and variance
of fi, and the covariance of fi and f j. This can be done in the following manner:

3.1. The probability Density Function (pdf) of fi

For a frequency distribution of C classes and sum of frequency f , it can be proven by mathematical
induction that the number of all possible arrangements of fi, i = 1, 2, . . . ,C is given by:

n =
(

f − 1
C − 1

)
(3.1)

In fact, the number of arrangements of C frequencies so that fi = t, i = 1, 2, . . . ,C, is equal to the
number of arrangements of (C − 1) frequencies so that their sum is ( f − t). Let this number be denoted
by nt. That is , assuming (3.1) is true, then

nt =

(
f − t − 1
C − 2

)
, t = 1, 2, . . . , f −C + 1, (3.2)

as for given C and f , fi = 1, 2, . . . , f −C + 1.
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Therefore, (3.1) is true if and only if
f−C+1∑

t=1

nt =

(
f − 1
C − 1

)
, (3.3)

where nt is given by (3.2).
Using (3.2), the left-hand side of (3.3) can be expressed as follows:

f−C+1∑
t=1

nt =

f−C+1∑
t=1

(
f − t − 1
C − 2

)
=

(
f − 2
C − 2

)
+

(
f − 3
C − 2

)
+ · · · +

(
C − 2
C − 2

)
,

=

(
f − 2
f −C

)
+

(
f − 3

f −C + 1

)
+ · · · +

(
C − 2

0

)
,

=

f−C∑
t=0

(
f − 2 − t
f −C − t

)
.

Using the result from [19],

n∑
j=0

(
n − j
k − j

)
=

(
n + 1

k

)
gives

f−C∑
t=0

(
f − 2 − t
f −C − t

)
=

(
f − 1
f −C

)
=

(
f − 1
C − 1

)
,

That is,
f−c+1∑

t=0

(
f − t − 1
C − 2

)
=

(
f − 1
C − 1

)
, (3.4)

and hence equation (3.3) is true. Accordingly, equation (3.1) is also true.
It can be concluded from (3.1) and (3.2) that:

Pi(t) = P ( fi = t) =

(
f−t−1
c−2

)(
f−1
c−1

) , t = 1, 2, . . . , f −C + 1. (3.5)

In fact, equation (3.4) implies that (3.5) is a probability mass function.
The mean and variance of fi can then be obtained as follows:

E ( fi) =
f−C+1∑

t=1

tPi(t),

=

f−C+1∑
t=1

t
(

f−t−1
c−2

)(
f−1
c−1

) .
Using t = f − ( f − t) will lead to

E ( fi) =
f
C
, i = 1, 2, . . . ,C (3.6)
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and

E
(

f 2
i

)
=

f−C+1∑
t=1

t2Pi(t) =
f−C+1∑

t=1

t2
(

f−t−1
c−2

)(
f−1
C−1

) .
Using t2 = f 2 − 2 f ( f − t) + ( f − t)2 gives

E
(

f 2
i

)
=

f (2 f −C + 1)
C(C + 1)

, i = 1, 2, . . . ,C (3.7)

then, it can be concluded from (3.6) and (3.7) that

Var( fi) =
f ( f −C)(C − 1)

C2(C + 1)
, i = 1, 2, . . . ,C (3.8)

Consider jointly the two random variables fi and f j where i , j. Their joint probability function, using
(3.1), is given by:

P
(

fi = r, f j = s
)
=

(
f−r−s−1

c−3

)(
f−1
c−1,

) (3.9)

for r = 1, 2, . . . , f −C + 1 and s = 1, 2, . . . , f −C + 2 − r.
Because once fi is known to equal r, f j may equal any integer from 1 to f − C + 2 − r (it should

be pointed out that for given values of f and C, fi may equal any integer from 1 to f − C + 1 and
fi + f j = 2, 3, . . . , f −C + 2).

The covariance of fi and f j is

Cov( fi, f j) = E( fi f j) − E( fi)E( f j).

Since the mean of both fi and f j is given by (3.6) and the joint probability function of fi and f j is given
by (3.9), we have

Cov
(

fi, f j

)
=

f−C+1∑
r=1

f−C+2−r∑
s=1

rs


(

f−r−s−1
C−3

)(
f−1
c−1

)  − (
f
c

)2

. (3.10)

The first term in the right-hand side of (3.10) can be expressed as

=

(
f − 1
C − 1

)−1 f−C+1∑
r=1

r
f−C+2−r∑

s=1

s
(

f − r − s − 1
f −C + 2 − r − s

)
.

Using s = ( f − r) − ( f − r − s) gives

f−C+2−r∑
s=1

s
(

f − r − s − 1
f −C + 2 − r − s

)
=

(
f − r

C − 1

)
,

and hence
f−C+1∑

r=1

r
f−C+2−r∑

s=1

s
(

f − r − s − 1
f −C + 2 − r − s

)
=

f−C+1∑
r=1

r
(

f − r
C − 1

)
.
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Using r = f − ( f − r) leads to
f−C+1∑

r=1

r
(

f − r
C − 1

)
=

(
f + 1
c + 1

)
.

Thus ,

Cov
(

fi, f j

)
=

(
f+1
c+1

)(
f−1
c−1

) − (
f
c

)2

, which reduces to

Cov
(

fi, f j

)
=
− f ( f −C)
C2(C + 1)

(3.11)

Now, we are prepared to determine the mean and variance of the G statistics.
Since G =

∑C
i=1 i fC−i+1, then

E(G) =
C∑

i=1

iE ( fC−i+1) =
C∑

i=1

i
(

f
C

)
,

=
f
C

C∑
i=1

i =
f
C

(
C(C + 1)

2

)
.

That is,

E(G) =
f (C + 1)

2
.

Similarly,

Var(G) = Var

 C∑
i=1

i fC−i+1

 = C∑
i=1

C∑
j=1,i, j

i j Cov
(

fi, f j

)
,

= Var ( fi)
C∑

i=1

i2 + Cov
(

fi, f j

) C∑
i=1

C∑
j=1,i, j

i j (3.12)

The amount,
∑C

i=1
∑C

j=1,i, j i j can be expressed as

C∑
i=1

C∑
j=1

i j = 2
C−1∑
i=1

C∑
j=i+1

i j = 2
C−1∑
i=1

i

 C∑
j=i+1

j

 ,
= 2

C−1∑
i=1

i
(C − i)(C + i + 1)

2
,

=
(
C2 +C

) C−1∑
i=1

i −
C−1∑
i=1

i2 −

C−1∑
i=1

i3,

which leads to
C∑

i=1

C∑
j=1,i, j

i j =
C

(
C2 − 1

)
(3C + 2)

12
(3.13)
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Substituting equations (3.8), (3.11) and (3.13) into equation (3.12), we find after some algebric reduc-
tion

Var(G) =
f ( f −C)(C − 1)

12
We may summarize this as a theorem.

Theorem 3.1. For a given frequency distribution; let G =
∑C

i=1 i fC−i+1, where C is the number of
classes and fi is the frequency of the ith class, then, the mean and variance of G are given by

E(G) =
f (C + 1)

2
. (3.14)

Var(G) =
f ( f −C)(C − 1)

12
(3.15)

where f =
∑C

i=1 fi ; fi , 0.

Corollary 3.1. The G statistic, as defined in (2.3), has a symmetrical distibution about f (C + 1)/2.
Proof. It has been shown that the lowest and highest values of G, assuming equal classes and fi , 0;
i=1,2,. . . ,C, are respectively given by (2.1) and (2.2).

It can then be concluded that the mean of G, as defined in (3.14), is always equal to the average of
GL and GH. This implies that G has a symmetrical distribution about f (C + 1)/2.

3.2. An alternative proof for Theorem 3.1

In fact, Theorem 3.1 can be proven in a second way using the following theorem:

Theorem 3.2. If X is the sum of n integers selected at random without replacement, from the first N
integers 1 to N, then, the mean and variance of X are given by

E(X) =
n(N + 1)

2
, Var(X) =

n(N + 1)(N − n)
12

,

and for large n and large N and n < N/2, X has an asymptotic normal distribution with the mean and
variance defined above, (See [20]).

In our situation, let Fi denote the cumulative frequency of the ith class, and hence G can be expressed
as follows:

G =
C∑

i=1

Fi =

C−1∑
i=1

Fi + FC = XC−1 + f , (3.16)

where

XC−1 =

C−1∑
i=1

Fi. (3.17)

Since fi , 0, then Fi , F j for i, j = 1, 2, . . . ,C. Furthermore, Fi = 1, 2, . . . , f − 1 for i =
1, 2, . . . ,C − 1.

Therefore, XC−1, as defined in (3.17), can be viewed as the sum of C−1 integers selected at random,
without replacement, from the first f − 1 integers 1 to f − 1. Hence, the mean and variance of XC−1,
according to theorem 3.2 are given by:
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E(XC−1) =
f (C − 1)

2
, Var(XC−1) =

f ( f −C)(C − 1)
12

. (3.18)

Accordingly, the mean and variance of G, using (3.16) and (3.18), are given by:

E(G) = E (XC−1) + E( f )

=
(C − 1) f

2
+ f

=
(C + 1) f

2
as f is a constant and

Var(G) = Var (XC−1 + f ) = Var (XC−1) =
f ( f −C)(C − 1)

12
,

which coincides with the results obtained in (3.14) and (3.15).

3.3. The Asymptotic Distribution of the G Statistic

Employing theorem 3.2 in our situation may provide that under the condition that (C − 1) < ( f −
1)/2, i.e., C < ( f + 1)/2 which is normally the situation with any frequency distribution, XC−1 has an
asymptotic normal distribution with the mean and variance defined in (3.18). Hence, the distribution
function of G may be approximated by the normal distribution function with the mean and variance
defined in (3.14) and (3.15). This leads to the following theorem.

Theorem 3.3. For a given frequency distribution, let G =
∑C

i=1 i fC−i+1, where C is the number of
classes and fi is the frequency of the ith class, then under the conditions that fi , 0 and C < ( f + 1)/2,
the distribution function of

G − f (C+1)
2

( f ( f−C)(C−1)
12 )1/2

, (3.19)

where f =
∑C

i=1 fi, may be approximated by the standard normal distribution function.

4. Testing Symmetry of a Frequency Distribution

It has been shown that the value of G for a symmetrical distribution is always equal to f (C +
1)/2. Hence, the more closer to f (C + 1)/2 is the observed value of G the more likely the frequency
distribution will be symmetrical and vice versa. Therefore, formula (3.19) can be used for testing
symmetry of frequency distribution. In other words, the G statistic is used to test whether or not the
value of skewness, as measured by S KA which is defined in (2.7), differs significantly from zero. This
can be done as follows:

Corollary 4.1. The distribution function of
[(

3( f−C)(c−1)
f

) 1
2 SKA

]
may be approximated by the stan-

dard normal distribution function.
Proof. Corollary 4.1 comes as a consequence of (2.7) and theorem (3.3).

Corollary 4.2. The measure of skewness, S KA, as given by (2.7), has an asymptotic normal distri-
bution with mean

E(S KA) = 0, (4.1)
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and variance

Var(S KA) =
f

3( f −C)(C − 1)
(4.2)

Proof. Corollary 4.2 comes as a consequence of corollary 4.1.
To determine whether or not the value of skewness, as measured by S KA, differs significantly from

zero we can compare it against the standard error of skewness. The probability of obtaining that large
a skewness value if data come from symmetrical distribution can be evaluated using the Z distribution,
where

Z =
ŜKA − 0

S A

where ŜKA is the estimated value reported for sample skewness coefficient as computed by (2.7) and
S A is the standard error of skewness obtained using (4.2);

S A =
√

Var(S KA)

Now, testing for symmetry H0 : S KA = 0 versus asymmetric alternatives is considered, where S KA is
the true unknown population skewness coefficient.

Two-Tailed test:
H0 : S KA = 0 versus H1 : S KA , 0

A|Z| value exceeding the critical Z-value (Zα/2) would lead to rejection of the assumption of symmetry
at a significance level α.
One- tailed test:

a.H0 : S KA = 0 versus H1 : S KA > 0
If the Z value is larger than Zα, this would lead to rejection of the assumption of symmetry at a signifi-
cance level α.

b. H0 : S KA = 0 versus H1 : S KA < 0
If the Z value is smaller than −Zα, this would lead to rejection of the assumption of symmetry at a
significance level α.

Alternatively, a critical value determined for S KA for a prescribed significance level and this value
compared with the observed value of S KA. In case of one tailed test, and for a prescribed significance
level α, the null hypothesis H0 that the frequency distribution is symmetric is rejected if the observed
value of (S KA) exceeds the asymptotic 1 − α quantile (percentage point) obtained for (S KA), that is,
H0 is rejected if:

SKA > SKA1−α

where SKA1−α = ZαS A and Zα is the upper α level of the standard normal distribution; Φ(Zα) = 1 − α,
e.g., Zα = 1.645 for α = 0.05. S A is as previously defined.

It can be proven that as f → ∞, the significance value, SKA1−α can be defined as:

SKA1−α =
(0.577)Zα
√

C − 1
, (4.3)
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Table 1. The frequency distribution

Class 40- 50- 60- 70- 80- 90-100 Total
Frequency 9 12 7 3 2 2 35

Table 2. The cumulative frequency distribution

Class Frequency Cumulative frequency
40− 9 L.T.* 50 9
50− 12 L.T.* 60 21
60− 7 L.T. ∗ 70 28
70− 3 L.T. ∗ 80 31
80− 2 L.T. 90 33
90 − 100 2 L.T.* 100 35
Total f = 35 G = 157

then, as f → ∞, we can reject the null hypothesis (H0) that the frequency distribution is symmetric if
the observed value of (S KA) > (0.577)Zα√

C−1
.

For a two-tailed test, the assumption of symmetry is rejected if:

|S KA| > Zα/2S A

Since the distribution of (S KA) is symmetric when S KA = 0, the sign of (S KA) is ignored when making
the test.

5. Worked Example

For purposes of illustrating the computations required for applying the (S KA) test of symmetry, the
following example shows the details of finding the values of (S KA) and how to apply the proposed test.

Considering the following table 1:
Perform the following test using the 5% significance level.

H0 : S KA = 0 against H1 : S KA > 0

To perform the S KA test of symmetry, the cumulative frequency distribution should be first constructed.
L.T.*=less than

From Table 2, the Calculations required for determining the value of (S KA) is as follows:

SKA =
2G − f (C + 1)
( f −C)(C − 1)

=
2(157) − 35(6 + 1)

(35 − 6)(6 − 1)
= 0.476

For f = 35 and C = 6 , we find: Asymptotic value of S KA0.95 = 0.467. Since S KA > S KA0.95

(0.476 > 0.467), the assumption of symmetry is rejected, and the frequency distribution given is
positively skewed.

An Empirical Example
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Table 3. Number of Adult Household Members in the U.S. in 2002(n=2,765)

# of Members 1 2 3 4 5
Frequency 1045 1365 259 75 21

Table 4. summary statistics of the data

Mean Median Mode S.d. Min Max Mid-range Range Q1 Q3
1.7928 2 2 0.7783 1 5 3 4 1 2

So far, we’ve got some sense of how the suggested statistics will behave with continuous data. To
assess the effectiveness of the suggested statistics in discrete data, particularly in real-world data, we
utilize the General Social Surveys (1972-2010) data as used in [21] and[22]. Table 3 contains data
from a 2002 poll of respondents in the United States who were asked how many persons over the age
of 17 lived in their home.

The summary statistics of the data in Table 3 are as follows in Table 4:
While the frequencies point to a probable rightward skewness, the mean is less than the median and

mode. One of the instances used to refute the mean-median-mode inequality with discrete data is this
one. Perform the following test using the 5% significance level.

H0 : S KA = 0 against H1 : S KA > 0

To perform the S KA test of symmetry, the cumulative frequency distribution should be first con-
structed. L.T.*=less than or equal to

From Table 5, the Calculations required for determining the value of (S KA) is as follows:

SKA =
2(11633) − 2765(5 + 1)

(2765 − 5)(5 − 1)
= 0.605

For f = 2765 and C = 5 , we find: Asymptotic value of S KA0.95 = 0.475. Since S KA > S KA0.95

(0.605 > 0.475), the assumption of symmetry is rejected, and the frequency distribution given is
positively skewed. We notice that the value of Asymptotic S KA0.95 calculated from (S KA1−α=Zα.S A )
is equal to value calculated from (4.3) because f is very large.

Table 5. The cumulative frequency distribution

Members Frequency Cumulative frequency
1 1045 L.T.* 1 1045
2 1365 L.T.* 2 2410
3 259 L.T. ∗ 3 2669
4 75 L.T.* 4 2744
5 21 L.T.* 5 2765

Total f = 2765 G = 11633
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6. Conclusions

This paper provides a new distribution-free test of symmetry for data in frequency tables. It has
been demonstrated that the proposed test based on G statistic (See [1]) includes several advantages
over the existing ones. Unlike classical techniques, it does not need any assumption of the statistical
distribution of the data. This flexibility renders it a broadly applicable test. Finally, the constraint that
the categories all have equal size and that none have a frequency of zero also makes the test extremely
computationally efficient. Based on the analysis of the statistical properties of G statistics (mean,
variance, and asymptotic distribution), the paper delivers a solid theoretical foundation for this new
methodology. Furthermore, the worked example and case study provide evidence on the simplicity of
the implementation as well as the interpretation of findings. To sum up, this study makes a significant
addition to non-parametric testing. Based on G-statistic, an user-friendly, statistically robust method
with good effectiveness had been proposed to conduct a symmetry test on frequency distributions so
that the data can be more creatively explored. Finally, it is intended that a future paper should give
further consideration to evaluating the performance of the proposed test compared with some other
tests in detecting symmetry and asymmetry of frequency distributions.
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