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1. Introduction

Statistical evaluation of lifetime data is unpredictable in applied sciences such as engineering, bi-
ology, medicine, environmental science, finance, and actuarial science, among others, and statistical
modelling is the best and most efficient method to look into the ambiguity of any occurrence. Life
time data play a crucial role in industries like insurance and finance because of the complicated nature
and unique qualities. Therefore, it would seem that the classic statistical distributions that are now
in use might benefit from enlargement and change. In fact, several efforts have been undertaken to
create new classes of lifetime distributions in order to broaden existing families of distributions and
provide the innovative model with greater flexibility. Over the past several years, numerous researchers
have contributed additional classes of life time distributions, which are now available in the statistical
literature. To do this, we advise the readers to look at these families, for example beta-G [1], the expo-
nentiated generalized-G [2], the transformed-transformer (T-X) [3], the Weibull-G [4], Kumaraswamy
Weibull-G [5], type II half logistic-G [6], odd Lindley-G [7], Topp-Leone odd log-logistic-G [8], odd
Fréchet-G [9], extended odd Fréchet-G [10], Type II Fréchet-G [11], inverse Weibull-G [12], modified
Weibull-G [13], odd Lomax-G [14], power Lindley- G [15], transmuted odd Fréchet-G [16], modi-
fied odd Weibull-G [17], new Kumaraswamy-G [18], new Marshall-Olkin extended-G [19], Type I
half logistic Burr X-G [20], Gompertz-G [21], Teissier-G [22], odd inverted Topp-Leone-G [23], odd
Chen-G [24], transmuted modified power-G [25], X-Gamma Lomax [26], new modified sine-G [27],
Topp-Leone Weibull G family [28], and mixture exponentialted-G [29] among others.

There are a variety of lifetime distributions used in model construction and real-world data analysis,
for which Ref. [30] and Ref. [31] illustrated the fundamental principles and concepts. The inverse
Weibull (IW) distribution is one of well-known models, and it has many uses in reliability engineering,
where Ref. [32], and Ref. [33] studied the various inference techniques in the distribution under
discussion. The probability density function (PDF) of the IW distribution, for y > 0, is as below:

F (y) = e−θ
α y−α , (1.1)

where, θ > 0 is the scale parameter and α > 0 is the shape parameter. The cumulative distribution
function (CDF) related to (1.1), for y > 0, is as follows:

f (y) = αθα y−α−1e−θ
α y−α . (1.2)

Refrences [34] and [35] provided the theoretical analyses of the IW distribution and order statistics
using inference, respectively. Two genuine data sets were studied by Ref. [36], along with applications
to the generalized modified Weibull distribution. Reference [37] applied the IW distribution to model
the wind speed data. Inferences from the IW distribution in information theory were discussed by Ref.
[38]. For recent studies see Refs. [39, 40].

Following the T-X family and utilising the PDF of the IW as the baseline distribution, Ref. [12]
suggested the IW-G (IW-G) family with the following CDF and PDF:

F (x) =
∫ G(x;η)

1−(G(x;η)

0
αθα y−α−1e−θ

α y−α dy = e−
[
θα

{ G(x;η)
1−(G(x;η))

}−α]
; x ∈ R, (1.3)

and,

f (x) =
αθαg(x; η)

[
G(x; η)

]−α−1[
1 − (G(x; η)

]1−α e−
[
θα

{ G(x;η)
1−(G(x;η)

}−α]
; x ∈ R, (1.4)
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where θ > 0 is the scale parameter, α > 0 is the shape parameter, G (x; η) and g (x;η) are the CDF and
PDF of a baseline continuous distribution with η as parameter vector, respectively.

The paper’s major goals of the present work can be summarized as follows:

1. Provide a new and more flexible version of the IW-G family given by Ref. [12] with an additional
shape parameter. The new family is called the extended odd IW-G (EOIW-G).

2. The EOIW-G family comprises two new families and generalizes three existing families from
References [9], [10], and [12].

3. The PDF of the recommended family’s submodels can have the right skewed, unimodal, U-
shaped, reversed J-shaped, and symmetrical in shape. Also, possible are uni-modal, U-shaped,
J-shaped, rising, decreasing, and constant hazard rate functions (HFs).

4. Explore a few of its statistical characteristics, including the quantile function, moments, incom-
plete moments, and order statistics.

5. Examine the EOIW-G family’s statistical inference using Bayesian and maximum likehood (ML)
techniques.

6. Carry out a simulation study to illustrate how the parameters of the model behave.
7. Owing to several beneficial attributes and tenable physical interpretations of the Weibull distri-

bution, the EOIW-Weibull (EOIWW) model is contrasted with a few popular models through the
use of goodness of fit tests.

8. To give better fits for the EOIW-Weibull (EOIWW) model than certain well-known models with
favourable outcomes.

The EOIW-G family is created by inserting (1.1) into (1.3), where the upper limit is taken as G(x;η)β

1−G(x;η)β
,

with the following CDF and PDF

F (x) =
∫ G(x;η)β

1−G(x;η)β

0
αθα y−α−1e−θ

α y−α dy = e
−

[
θα

{
G(x;η)β

1−G(x;η)β

}−α]
; x ∈ R, (1.5)

and

f (x) =
α β θα g (x; η)

[
1 −G(x; η)β

]α−1

G (x; η)β α+1 e
−

[
θα

{
G(x;η)β

1−G(x;η)β

}−α]
; x ∈ R, (1.6)

where θ is the scale parameter and α, β are the shape parameters. For the random variable to have PDF
(1.6), we will write X∼EOIW-G(θ, α, β, η).

The associated HF for the EOIW-G family is

h (x) =
α β θα g(x; η)

(
1 −G(x; η)β

)α−1

G(x; η)βα+1
(
1 − exp−

[
θα

{
G(x;η)β

1−G(x;η)β

}−α]) exp−
[
θα

{
G(x; η)β

1 −G(x; η)β

}−α]
.

Furthermore, the EOIW-G family of distributions can be simulated by using a quantile function; let q
be a random variable having a uniform distribution on the interval [0,1]. The quantile function of the
family is given by:

Q (q) = G−1
[ (

1 +
(
−θ−α ln q

) 1
α

) −1
β

]
, q ∈ [0 , 1] ,
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where G−1 (.) is the inverse function of the CDF of the baseline distribution. For q = 0.5, the median
of the EOIW-G family is produced. Also, the quantile function is used in obtaining the skewness and
kurtosis measures when the moments of the distribution do not exit.

In this paper we discussed two real data of enginearing applications: Time between failures (TBF)
is a key metric in reliability engineering, and it is particularly relevant for repairable systems. TBF
refers to the time elapsed between consecutive failures of a system or component. In the context of
repairable items, this metric helps assess the reliability and maintainability of a system over time &
“Vinyl chloride (VC) is a chemical compound that is of particular concern in environmental engineer-
ing due to its potential for groundwater contamination. When dealing with data obtained from cleanup
gradient groundwater monitoring wells, engineers and environmental scientists use this information
for various applications.”

The rest of this article is divided into the following sections. Section 2 studies four specific exam-
ples of the EOIW-G family, along with plots of their PDFs and HFs. In Section 3, certain statistical
properties of the EOIW-G family are discovered, such as quantiles, linear representations of the PDF
and CDF, moments, entropy measure, mean deviation, and order statistics. In Section 4, parameter esti-
mation is covered using the ML and Bayesian techniques. We provide a simulation analysis in Section
5 that compares the aforementioned estimation techniques. In order to highlight the significance of the
new distribution, two real-world data sets are taken into consideration for the EOIWW distribution in
Section 6. In Section 7, some last observations are presented.

2. Special Models of the EOIW-G Family

This section provides a list of notable new and existing families. A lot of new distributions can be
deduced as special models from the EOIW-G family of distributions.

Following are a list of several notable new and existing families based on (1.6):

1. For θ = 1, the PDF provides the extended odd Fréchet-G family presented by Ref. [10].
2. For θ = 1, and β = 1 the PDF provides the odd Fréchet-G family presented by Ref. [9].
3. For β = 1, the PDF provides the IW-G family presented by Ref. [12].
4. For α = 1, the PDF provides the extended odd inverse exponential-G family (new).
5. For α = 2, the PDF provides the extended odd inverse Rayleigh-G family (new).

A lot of new distributions can be deduced as special models from the EOIW-G family of distribu-
tions. Consequently, we will introduce some of these special models as follows:

2.1. The EOIW-Uniform Distribution

Suppose the parent distribution is uniform on the interval (0, a), where a > 0. The CDF of the
EOIW-uniform (EOIW-U) distribution depending on the four parameters (θ, a, α, β) > 0 is given by:

FEOIWU(x) = e−[θ
α [(x/a)−β−1]α]; 0 < x < a < ∞.

The corresponding PDF is:

fEOIWU(x) =
α β θα

a

[
1 −

( x
a

)−β]α−1 ( x
a

)β
e−[θ

α [(x/a)−β−1]α] , 0 < x < a < ∞.
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The hazard rate function and qth quantile function are, respectively, given by

hEOIWU(x) =
α β θα

a

[
1 −

( x
a

)β]α−1 ( x
a

)−(βα+1) [
e[θα [(x/a)−β−1]α] − 1

]−1
,

and
Q (q) = a

[
1 + (−θα ln q)

1
α

]−β
, q ∈ [0, 1] .

2.2. EOIW-Weibull Distribution

Considering the baseline distribution is a Weibull with PDF and CDF given by g(x) =
µ λµ xµ−1e−(λ x)µ , and G(x) = 1 − e−(λ x)µ , where µ > 0, λ > 0, respectively. The CDF of the EOIWW
distribution depending on the five parameters (θ, α, β, µ, λ) > 0, is:

FEOIWW(x) = e−θ
α
[(

1−e−(λ x)µ
)−β
−1

]α
; x > 0.

The PDF of the EOIWW distribution is given by:

fEOIWW(x) =
α β µ λµ θα xµ−1 e−(λ x)µ(

1 − e−(λ x)µ) β α+1

[
1 −

(
1 − e−(λ x)µ

) β]α−1
e−θ

α
[(

1−e−(λ x)µ
)−β
−1

]α
; x > 0 .

The EOIW-W model is a highly adaptable model that contains several additional models. The sub-
models of the EOIWW model are listed in Table 1. Twenty four special models are listed in Table 1
for the EOIWW model, including well-known distributions discussed and studied in the literature.

The associated HF is obtained as follows:

hEOIWW(x) =
α β µ λµ θα xµ−1e−(λ x)µ

[
1 −

(
1 − e−(λ x)µ

)β]α−1

(
1 − e−(λ x)µ)β α+1

[
exp

{
θα

[(
1 − e−(λ x)µ)−β − 1

]α}
− 1

] .

Furtheremore, the quantile function of the EOIWW distrbution is as follows:

Q (q) =
1
λ

[
− ln

[
1 −

{
1 +

(
−θ−α ln q

) 1
α

} −1
β

]] 1
ν

, q ∈ [0, 1] . (2.1)

Equation (2.1) used to generate random numbers of the EOIWW distribution.

2.3. EOIW-Fréchet Distribution

Suppose that the Fréchet is the baseline distribution with PDF g(x) = a ba x−(a+1)e−(b/x)a
, and

CDF G(x) = e−(b/x)a
. The EOIW-Fréchet (EOIWF) distribution depending on the five parameters

(θ, α, β, a, b) > 0 has CDF given by:

FEOIWF(x) = e−
{
θ α

[ (
e−(b/x) a )−β

−1
]α}

; x > 0.

The corresponding PDF is:

fEOIWF(x) =
α β a ba θα x−(a+1) e−(b/x)a(

e−(b/x)a) β α+1

[
1 −

(
e−(b/ x)a) β]α−1

e−
{
θ α

[ (
e−(b/x) a )−β

−1
]α}

; x > 0 .
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Table 1. Sub-models of the EOIWW model

θ α β µ λ Reduced Model
1 - - - The Extended Odd Fréchet-Weibull
1 - - 1 - The Extended Odd Fréchet-Exponential
1 - - 2 - The Extended Odd Fréchet-Rayleigh
1 - 1 - The Odd Fréchet-Weibull
1 - 1 1 - The Odd Fréchet-Exponential
1 - 1 2 - The Odd Fréchet-Rayleigh
- 1 - - The Extended Inverse Exponential-Weibull
- 1 - 1 - The Extended Inverse Exponential-Exponential
- 1 - 2 - The Extended Inverse Exponential-Rayleigh
- 1 1 - - The Inverse Exponential-Weibull
- 1 1 1 - The Inverse Exponential-Exponential
- 1 1 2 - The Inverse Exponential-Rayleigh
- 2 - - - The Extended Inverse Rayleigh-Weibull
- 2 1 - The Extended Inverse Rayleigh-Exponential
- 2 2 - The Extended Inverse Rayleigh-Rayleigh
- 2 1 - - The Inverse Rayleigh-Weibull
- 2 1 1 - The Inverse Rayleigh-Exponential
- 2 1 2 - The Inverse Rayleigh-Rayleigh
- - 1 - - Inverse Weibul-Weibull
- - 1 1 - Inverse Weibul-Exponential
- - 1 2 - Inverse Weibul-Rayleigh
1 1 1 - - Weibull
1 1 1 1 - Exponential
1 1 1 2 - Rayleigh

The HF of the EOIWF distribution is given by:

hEOIWF(x) =
α β a ba θα x−(a+1)e−(b/ x)a

[
1 −

[
e−(b/ x)a

]β]α−1

[
e−(b/ x)a]β α+1

[
exp

{
θ α

[ (
e−(b/x) a)−β

− 1
]α}
− 1

] .
The quantile function of the EOIWF distribution is defined as:

Q (q) = b
[
− ln

[
1 +

(
−θ−α ln q

) 1
α

] −1
β

] −1
a

, q ∈ [0, 1] .

2.4. EOIW-Lomax Distribution

If the parent distribution is Lomax distribution with PDF and CDF given by g(x) = γ λγ (λ + x)−γ−1 ,

and G(x) = 1 −
(
1 + x

λ

)−γ
, where λ, γ > 0, respectively. Then the CDF of the EOIW-Lomax (EOIWL)
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distribution depending on the five parameters (θ, α, β, λ, γ > 0) is given by:

FEOIWL(x) = e− θ
α
[
(1−(1+(x/λ))−γ)−β−1

]α
; x > 0.

The PDF and HF of the EOIWL distribution are, respectively, given as follows:

fEOIWL(x) = α β γ λγ θα (λ+x)−(γ+1)(
1−

(
1+(x

/
λ)

)−γ) β α+1

[
1 −

(
1 − (1 + (x/λ))−γ

) β]α−1
e− θ

α
[
(1−(1+(x/λ))−γ)−β−1

]α
; x > 0,

and,

hEOIWL(x) =
α β γ λγ θα

[
1 −

(
1 − (1 + (x/λ))−γ

)β]α−1

(λ + x)(γ+1) (1 − (1 + (x/λ))−γ
)β α+1

[
exp θα

[(
1 − (1 + (x/λ))−γ

)−β
− 1

]α
− 1

] .
The quantile function of the EOIWL distribution can easily be done using the following equation:

Q (q) = λ

 (1 − [
1 +

(
−θ−α ln q

) 1
α

] −1
β

) −1
γ

− 1

 , q ∈ [0, 1] .

The PDF and HF of EOIWU (θ, α, β, a), EOIWW (θ, α, β, µ, λ), EOIWF (θ, α, β, a, b), and
EOIWL (θ, α, β, λ, γ) for a range of parameter values are shown in Figures 1 and 2. The PDF of
EOIW-G models can be left-skewed, symmetrical, reversed-J, J-shaped, unimodel, and U-shaped, as
Figure 1 illustrates. Furthermore, Figure 2 illustrates the variety of shapes that the HF can assume,
such as constant, decreasing, increasing, and upside-down bathtub shapes. Therefore, fitting data sets
with several forms will be better suited for the EOIW-G family.

3. Statistical Properties

This section looks at several EOIW-G family member’s mathematical characteristics. The overall
results, at the very least, are applied, whenever feasible, to the EOIWW distribution as explained in
Subsection 3.2.

3.1. Mixture Representation

Here, mixture representations of the EOIW-G family’s PDF and CDF are deduced.
Using the exponential expansion in the PDF (1.6) provides

e−θ
α
[

G(x; η)β

1−G(x; η)β

]−α
=

∞∑
i1=0

(−1)i1 θi1 α

i1!

[
G(x; η)β

1 −G(x; η)β

]−i1 α

. (3.1)

Inserting (3.1), in the PDF (1.6), then we have:

f (x) =
∞∑

i1=0

(−1)i1 θα (i1+1)α β g(x; η)
[
1 −G(x; η)β

]α (i1+1)−1

i1! G(x; η)α β (i1+1)+1 . (3.2)

The generalized binomial expansion, for s > 0 is real non integer, is given by:

[1 − Z]s−1 =

∞∑
i2=0

(−1)i2

(
s − 1

i2

)
Zi2 , |Z| < 1. (3.3)
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Figure 1. PDF plots for some special models

Using (3.3) in (3.2), then the PDF of the EIOW-G family is as follows

f (x) =
∞∑

i1,i2=0

ψi1 i2 k g(x; η) G(x; η)k−1 , (3.4)

where ψi1i2 =
(−1)i1+i2α β θα (i1+1)

i1 ! k

(
α (i1 + 1) − 1

i2

)
, k = β (i2 − α (i1 + 1) ) .

Hence, the PDF (3.4) is represented as a mixture form of the Exponentiated-G (Exp-G) PDFs.
Another form of (3.4) can be written as:

f (x) =
∞∑

i1,i2=0

ψi1i2 sk (x; η) , (3.5)

where sk (x; η) = k g (x; η) G (x; η)k−1 is the PDF of the exponentaiated (EXP)-G family with power
parameter k. Additionally, the CDF of the EOIW-G family can be expressed as the mixture represen-
tation of Exp-G CDFs.

For δ is positive integer, [F(x)]δ of the EOIW-G family can be expressed as follows:

[F(x)]δ =
∞∑

i3=0

(−1)i3 δi3θi3 α

i3!

[
G(x; η)β

1 −G(x; η)β

]−i3 α

. (3.6)
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Figure 2. HF plots for some special models

Using binomial expansion, more than on time, in (3.6), we get

[F(x)]δ =
∞∑

i3,i4=0

ζi3,i4
[
G(x; η)

]β(i4−α i3)
, (3.7)

where ζi3,i4 =
(−1)i3+i4δi3θα i3

i3 !

(
α i3

i4

)
.

3.2. Moments and Associated Measures

It is possible to derive the moments, moments generating function, and incomplete moments of
the EOIW-G family of distributions. These moment measurements are specifically obtained for the
EOIWW distribution.

The rth non-central moment of X has the EOIWW distribution is derived from (3.4) as follows:

µ′r =

∞∑
i1,i2=0

ψi1 i2

∫ ∞

−∞

xr k g(x; η) G(x; η)k−1 dx . (3.8)

Using the Weibull distribution as the baseline in (3.8), then rth-moment of the EOIWW distribution is
given by

µ′r =

∞∑
i1, i2=0

ψi1 i2 k µ λµ
∫ ∞

0
xr+µ−1e−(λ x)µ

[
1 − e−(λ x)µ

] k−1
dx . (3.9)
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Using the binomial expansion in (3.9), the rth-moment of the EOIWW distribution is as follows:

µ′r =

∞∑
i1, i2, i3=0

πi1 i2 i3 Γ

(
r
µ
+ 1

)
, r = 1, 2, ...

where, πi1 i2 i3 =
(−1)i3ψi1 i2 k

(i3+1)(r/µ)+1 λr

(
k − 1

i3

)
, ψi1i2 and k defined in (3.4), while Γ(.) stands for gamma

function. Furthermore, the moment generating function of the EOIWW distribution is

MX (t) =
∞∑

r=0

tr

r !

∞∑
i1,i2,i3=0

πi1i2i3 Γ

(r
v
+ 1

)
.

The rth incomplete moment of X having EOIWW distribution is obtained as follows:

ρr (t) =
∞∑

i1, i2=0

ψi1 i2 k µ λµ
∫ t

0
xr+µ−1e−(λ x)µ

[
1 − e−(λ x)µ

] k−1
dx =

∞∑
i1, i2, i3=0

πi1 i2 i3 Γ̄

(
r
µ
+ 1, (i3 + 1) (λ t)µ

)
,

where Γ̄(.) is the lower incomplete gamma function. Economics, reliability, demography, and medicine
all benefit greatly from the usage of the Bonferroni and Lorenz curves. The incomplete moments allow
for the computation of these curves. The Lorenz curve and the Bonferroni curve, are respectively, de-
fined by L(x) = ρ1(x)

/
µ′1, B(x) = L(x)/F(x).Hence these curves are easily obtained, by using ρ1(x), µ′1,

and F(x), as follows:

L(x) = (µ′1)−1
∞∑

i1, i2, i3=0

πi1 i2 i3 Γ̄

(
µ + 1
µ

, (i3 + 1) (λ x)µ
)
,

and

B(x) = (µ′1)−1
∞∑

i1, i2, i3=0

πi1 i2 i3 Γ̄

(
µ + 1
µ

, (i3 + 1) (λ x)µ
)

exp−
{
θα

[(
1 − e−(λ x)µ

)−β
− 1

]α}
.

3.3. Mean Deviation

The statistical measures of the mean deviations about mean and median can be computed using the
incomplete moments. For a random variable X distributed as EOIWW, the mean deviation about mean
ε1 is as follows:

ε1 = 2
[
µ
′

1 F
(
µ
′

1

)
− ρ1(µ

′

1)
]
,

which is given by:

ε1 = 2µ′1

[
exp

{
−θα

[(
1 − e−

(
λ µ
′

1

)µ)−β
− 1

]α}]
− 2

∞∑
i1, i2, i3=0

πi1 i2 i3 Γ̄

(
µ + 1
µ

, (i3 + 1)
(
λ µ

′

1

)µ)
,

where µ′1 is the mean of the EOIWW distribution. Also the mean deviation about median ε2 of the
EOIWW distribution, with median (M) is

ε2 = µ
′

1 − 2 ρ1 (M) ,

which is given by:

ε2 = µ
′
1 − 2

∞∑
i1, i2, i3=0

πi1 i2 i3 Γ̄

(
µ + 1
µ

, (i3 + 1) (λM)µ
)
.
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3.4. Rényi Entropy

Information theory and probability distribution use entropy to measure unpredictability. It describes
how much uncertainty there is in relation to random variables. The EOIWW distribution’s Rényi
entropy, for r > 0, r ̸= 1, is given by:

Rr(x) =
1

(1 − r)
log

∫ ∞

0
f r
EOIWW(x) dx . (3.10)

Using the exponential expansion in f r
EOIWW(x) gives

f r
EOIWW(x) =

(α β µ λµ θα)r xr(µ−1) e−r (λ x)µ

i !

[
1 −

(
1 − e−(λ x)µ

) β]α i+r [
1 − e−(λ x)µ

]−β α (r+i)−r
. (3.11)

Applying binomial expansion twice times in (3.11), we find

f r
EOIWW(x) =

∞∑
i, j, k=0

Λi, j, k (α β µ λµ θα)r xr (µ−1)e−(k+r) (λ x)µ , (3.12)

where Λi, j,k =
(−1)i+ j+k(r θα)i

i !

(
α i + r

j

) (
β ( j − α (i + r)) − r

k

)
.

Hence, inserting (3.12) in (3.10), then the Rényi entropy of the EOIWW distribution is

Rr(x) =
1

(1 − r)
log

 (α β θα)r

µ1−r (r + k)r−
(

r−1
µ

) ∞∑
i, j, k=0

Λi, j, kΓ

(
r −

(
r − 1
µ

) )  , r > 1,

where Γ (.) is the gamma function.

3.5. Order Statistics

Suppose x(1 ), x(2 ), ..., x(n ) be an ordered random sample of size n drawn from EOIW-G with CDF
and PDF given by (1.5) and (1.6), respectively. The PDF of X(r) is given by:

fX(r) (x) =
n−r∑
d=0

(−1)d

B (r, n − r + 1)

(
n − r

d

)
[F(x)]r+d−1 f (x). (3.13)

Using (3.5) and (3.7) with δ = (r + d − 1) in (3.13), we get the PDF of rth order statistic of the EOIW-G
family as follows:

fX(r) (x) = w
n−r∑
d=0

∞∑
i, j,m,l=0

ρd,i, j,m,l g(x; η) G (x; η)w−1 ,

where

ρd,i, j,m,l =
β( j−α(i+1))
B(r,n−r+1) w (−1)d

(
n − r

d

)
ψi, jζm,l , w = β

[
( j + l) − α (i + m + l)

]
and B(., .) is the beta

function. The density function of the EOIW-G order statistics can be written as a linear combination
of the EXP-G density function with power parameter w, as follows:

fX(r) (x) =
n−r∑
d=0

∞∑
i, j,m,l=0

ρd,i, j,m,l Dw(x; η), (3.14)
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where Dw (x; η) = w g(x; η) G(x; η)w−1is the PDF of EXP-G family with power parameter w. We may
derive numerous statistical features for the PDF of the EOIW-G order statistics, including moments
and L-moments, based on (3.14).

In particular: The density function of rth order statistics of the EOIWW distribution can be written
as

fX(r)(x) =
n−r∑
d=0

∞∑
i, j,m, l=0

ρd, i, j,m, l w µ λµx(µ−1)e− (λ x)µ
(
1 − e−(λ x)µ

)w−1
. (3.15)

For r =1, and r = n, the smallest order statistics X(1) and the largest order statistics X(n) of the EOIWW
distribution are produced.

4. Parameters Estimation

This section is devoted to estimate the parameters Ξ = (θ, α, β, η)T for the EOIW-G family of
distributions using ML and Bayesian estimation methods.

4.1. Maximum Likelihood Estimates

Using complete samples, we derive the ML estimates (MLEs) of the unknown parameters for the
EOIW-G family. Assume x1, x2, ..., xn be a random sample from the EOIW-G (Ξ) family with PDF
(1.2) and Ξ = (θ, α, β, η)T be a parameter vector. The log-likelihood function is given by:

log L (Ξ) = n log(αβ) + nα log (θ) +
∑n

i=1 log g (xi; η) + (α − 1)
∑n

i=1 log
[
1 −G (xi; η)β

]
− (β α + 1)

∑n
i=1 log G (xi; η) − θα

∑n
i=1

[
G

(
xi; η

)−β
− 1

]α
.

(4.1)

The elements of the score function U (Ξ) =
(
Uθ,Uα,Uβ,Uη

)T
are

Uθ =
nα
θ
− α θα−1

n∑
i=1

[
G (xi; η)−β − 1

]α
,

Uα =
n
α
+ n log (θ) +

∑n
i=1 log

[
1 −G (xi; η)β

]
− β

∑n
i=1 ln G(xi; η) − θα log θ

∑n
i=1

[
G(xi; η)−β − 1

]α
−θα

∑n
i=1

[
G (xi; η)−β − 1

]α
log

[
G (xi; η)−β − 1

]
,

Uβ =
n
β
−

∑n
i=1

(α−1) log G(xi;η)
G(xi;η)−β−1

+ α θα
∑n

i=1

[
1 −G(xi; η)β

]α−1
G (x; η)−β log

[
G(xi; η)

]
−α

∑n
i=1 log G(xi; η),

and

Uη =
∑n

i=1

[
∂ g(xi; η)

/
∂ η

g(xi; η)

]
− (α − 1)

∑n
i=1

βG(xi; η)β−1
[
∂G(xi; η)

/
∂ η

]
[1−G(xi; η)β]

− (β α − 1)
∑n

i=1

[
∂G(xi; η)

/
∂ η

G(xi; η)

]
+ α β θα

∑n
i=1

[
[1−G(xi; η)β]α−1[

∂G(xi; η)
/
∂ η

]
G(xi; η)1−β α

]
.

The MLEs Ξ̂ =
(
θ̂, α̂, β̂, η̂

)T
of Ξ = (θ, α, β, η)T are derived by setting the above score function to

zero and numerically solving the resulting system of non-linear equations simultaneously using any
statistical software.
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Under standard regularity conditions, when n → ∞, the distribution of Ξ can be approximated by
a multivariate normal Np

(
0, Var

(
Ξ̂
))

, where variances of estimated parameters denotes the diagonal
elements of inverting the information matrix evaluated at MLEs Ξ̂ of the model parameters. The
100 (1 − ω)% approximate two-sided confidence intervals for the parameters Ξ = (θ, α, β, η)T of the
EOIW-G family are respectively given by:

θ̂ ± zω/2
√

var
(
θ̂
)
, β̂ ± zω/2

√
var

(
β̂
)
, α̂ ± zω/2

√
var (α̂) , and η̂ ± zω/2

√
var (η̂),

where the upper (ω/2)th percentile of the standard normal distribution is z(ω/2) .

4.2. Bayesian Estimation

This section utilises a Bayesian approach to estimate and examine the parameters of the EOIW-G
family of distributions. In this approach, two different loss functions the asymmetric: linear exponen-
tial (LINEX) loss function and the symmetric: squared error loss function (SELF) are used to compute
Bayes estimates (BEs). In this Bayesian approach, the gamma distribution is used as a prior distribu-
tion. When considered individually as prior joint density functions, the parameters of θ, α, β, and η
take the following form:

π (θ, α, β, η) ∝ θh1−1e−q1θαh2−1e−q2αβh3−1e−q3βηh4−1e−q4η; hi, qi > 0, i = 1, 2, 3, 4. (4.2)

To establish the hyper-parameters, we employ informative priors (IFs). These IFs priors are derived by
equating the mean and variance of likelihood estimators for Ξ̂ =

(
θ̂, α̂, β̂, η̂

)T
to the mean and variance

of the specified gamma priors for hi and qi. Therefore, by setting the mean and variance of likelihood
estimators for Ξ̂ =

(
θ̂, α̂, β̂, η̂

)T
equal to those of the gamma priors, we obtain the outcome as described

in Ref. [38].

1
I

I∑
j=1

Ξ̂i
j =

hi

qi
,

1
I − 1

I∑
j=1

Ξ̂i
j −

1
I

I∑
j=1

Ξ̂i
j


2

=
hi

qi
2 , i = 1, 2, 3, 4,

where I is the number of samples iteration. Now on solving the above two equations, the estimated
hyper-parameters can be written as:

hi =

(
I−1 ∑I

j=1 Ξ̂i
j
)2

(I − 1)−1 ∑I
j=1

(
Ξ̂i

j − 1
I

∑I
j=1 Ξ̂i

j
) , qi =

(
I−1 ∑I

j=1 Ξ̂i
j
)

(I − 1)−1 ∑I
j=1

(
Ξ̂i

j − 1
I

∑I
j=1 Ξ̂i

j
)2 .

The joint posterior density function of Ξ = (θ, α, β, η)T is obtained as follows using the likelihood
function of the EOIW-G family of distributions and joint prior density (4.2)

Π (θ, α, β, η| x) =
π (θ, α, β, η) L (θ, α, β, η)∫

...
∫
π (θ, α, β, η) L (θ, α, β, η) dθ dα dβ dη

.

The posterior of the EOIW-G family of distributions is as follows:

Π (θ, α, β, η| x) ∝ αn+h2−1βn+h3−1θnα+hi−1ηh4−1e
−θα

∑n
i=1

{
G(xi; η)β

1−G(xi; η)β

}−α
e−q1θ−q2α−q3β−q4η∏n

i=1
g(x; η)

G(xi; η)β α+1

[
1 −G (xi; η)β

]α−1
.
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Most Bayesian inference methods rely on symmetric loss functions, with one notable example being

SELF. Using SELF, we derive BEs for θ, α, β, and η, denoted as
↔

Ξ=

(
↔

θ ,
↔
α,
↔

β,
↔
η
)T

that defined by:

L
(
↔

Ξi, Ξi

)
=

(
↔

Ξi −Ξi

)2
; Ξ = (θ, α, β, η) .

Under the SELF, the BEs can be defined by:

↔

Ξi= E (Ξi | x) =
∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
Ξi

∏
(Ξi | x) dθ dα dβ dη. (4.3)

The LINEX loss function is a type of asymmetric loss function used in statistical decision theory and
Bayesian estimation. It is designed to balance between the squared-error loss and the absolute error
loss. The LINEX loss function is defined as:

L
(
↔

Ξi, Ξi

)
= c e

↔

Ξi−Ξi−
↔

Ξi +Ξi ; Ξ = (θ, α, β, η) .

The BEs for Ξ using the LINEX loss function is derived in the following manner:

↔

Ξi=
−1
c

ln
[

E
(
e−cΞi

∣∣∣ x
) ]
=
−1
c

ln
[∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
ecΞi

∏
(Ξi | x) dθ dα dβ dη

]
. (4.4)

It’s important to highlight that the integrals described in Equations (4.3) and (4.4) are not readily
derivable. Therefore, we employ the Markov Chain-Monte-Carlo (MCMC) method to estimate the
expected values in Equations (4.3) and (4.4).

It was noted that the integrals described in Equations (4.3) and (4.4) cannot be explicitly calculated.
Therefore, we utilize the MCMC method to estimate the integral values in Equations (4.3) and (4.4).
Numerous studies have employed the MCMC technique, as demonstrated by [39], [42], [43], [44] and
[45].

Gibbs samplers are a subset of MCMC algorithms, and within this category, more comprehensive
Metropolis algorithms play a crucial role. Two commonly used MCMC approaches are the Metropolis-
Hastings (MH) and Gibbs sampling methods. The MH method, akin to acceptance-rejection sampling,
postulates that each iteration in the algorithm can produce a candidate value from a proposal distribu-
tion. We incorporate the MH method during the Gibbs sampling steps to generate random samples of
conditional posterior densities from the EOIW-G distributions:

Π (θ|α, β, η , x) ∝ θnα+h1−1e
−θα

∑n
i=1

{
G(xi; η)β

1−G(xi; η)β

}−α
e−q1 θ,

Π (α| θ, β, η, x) ∝ αn+h2−1e
−θα

∑n
i=1

{
G(xi; η)β

1−G(xi; η)β

}−α
e−q2α

n∏
i=1

[
1 −G(x; η)β

]α−1

G (xi; η)β α+1 ,

Π ( β| θ, α, η, x) ∝ βn+h3−1e
−θα

∑n
i=1

{
G(xi; η)β

1−G(xi; η)β

}−α
e−q3β

n∏
i=1

[
1 −G(x; η)

]α−1

G (xi; η)β α+1 ,

and

Π (η| θ, α, β, x) ∝ ηh4−1e
−θα

∑n
i=1

{
G(xi; η)β

1−G(xi; η)β

}
e−q4η

n∏
i=1

g(x; η)
G (xi; η)β α+1

[
1 −G (xi; η)β

]α−1
.
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5. Numerical Study

In this section, we employ a Monte-Carlo simulation approach to compare the ML estimation
method with the Bayesian estimation method. We use the R language to estimate the parameters of the
EOIW-W model using ML and Bayesian approaches based on MCMC with both the SELF and LINEX
loss function. The Monte-Carlo experiments are conducted with 10,000 randomly generated samples
from the EOIW-G family of distributions, where ’x’ represents the lifetime values of the EOIW-W
model for various actual parameter values and sample sizes (35, 60, 100, and 200). The best estima-
tor methods are evaluated based on their ability to minimize estimator relative absoulute bias (RAB),
mean squared error (MSE), length of confidance intervals (LCI) and covarge probability (CP). The LCI
for MLE is LACI, while for Bayesian is LCCI. The level of confidance intervals is 95%. The actual
parameters of the EOIW-W model are known in advance as:

Case 1: θ = 0.5 , α = 0.5, β = 0.5, µ = 0.5, λ = 0.5.
Case 2: θ = 0.5 , α = 0.5, β = 0.5, µ = 2, λ = 2.
Case 3: θ = 0.5 , α = 0.5, β = 2, µ = 2, λ = 2.
Case 4: θ = 2 , α = 2, β = 2, µ = 2, λ = 2.
Case 5: θ = 0.9 , α = 0.6, β = 2, µ = 3, λ = 2.
Case 6: θ = 0.9 , α = 0.6, β = 2, µ = 1.3, λ = 1.2.
Tables 2, 3, and 4 provide an overview of the simulation outcomes for the methodologies introduced

in this paper concerning point estimation. To facilitate a meaningful comparison among different point
estimation methods, we evaluate the RAB, MSE, and LCI values. Consequently, the following insights
and findings were derived:

1. Consistency of point estimates tends to improve with larger sample sizes. This means that as n
increases, the likelihood of point estimates converging to the true population parameter values
also increases.

2. For parameters of the EOIW-W model distribution, the RAB and MSE decrease as sample size n
grows.

3. Larger samples typically result in narrower confidence intervals (LCI). This reflects a higher level
of confidence in the precision of estimates. It also indicates that as the sample size increases, the
range within which the true parameter value likely falls becomes more compact.

4. The best method of estimation is the Bayesian estimation.
5. While larger sample sizes yield more accurate estimates, they can also increase computational

demands. Some estimation methods, especially those involving MCMC, may require more com-
putational resources and time with larger samples.

6. The BEs under LINEX loss function have smallest RAB, and MSE.

6. Analysis to Real Data

For special model of EOIW-G family of distributions, called the EOIWW distribution, we present
two real data sets to illustrate the performance and flexibility of the EOIW-W distribution with other
competitive distributions namely: Additive Weibull(AW) [46], new modified Weibull (NMW) [47],
Weibull Weibull (WW) [4], IW Weibull (IWW) [12], modified WeibullWeibull (MWW) [13] and
Weibull (W) for data modeling.

Computational Journal of Mathematical and Statistical Sciences Volume 3, Issue 2, 359–388



374

The goodness of fit of the fitted distributions are measured by using some analytical measures
called -2 log-likelihood function, say (H1), Akaike information criterion, say (H2), corrected Akaike
information criteria, say (H3), Bayesian information criterion, say (H4), and Kolmogorov-Smirnov, say
(H5) statistic. The smallest value of criteria, is the best fit distribution corresponds to data.

Data Set 1:
The first data set is provided in Ref. [48] about time between failures for repairable item. The data

are listed as the following:
1.43, 0.11, 0.63, 0.71, 0.77, 1.23, 2.63, 1.49, 1.24, 3.46, 2.46, 1.97, 0.59, 0.74, 1.86, 1.23, 0.94,

1.17, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37.
Table 5 discussed MLE and BE for parameters of EOIWW distribution. The analytical measures

are given in Table 6 shows that the EOIWW distribution has the smallest measure values compared
with those values of the other distributions. So, the EOIWW distribution is the best fit than the other
fitted distributions for this data.
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Figure 3. TTT plot and HF of EOIWW distribution

Figure 3 gives TTT (Time-to-Failure) plot and HF of the EOIWW distribution, which a TTT plot,
also known as a ”survival plot” or ”reliability plot,” is a graphical representation used to visualize the
time to failure or time to an event for a items of data set. By Figure 3, we can note the TTT line and
the HF line are increases. When both the TTT line and the hazard rate line of EOIWW distribution are
increasing, it suggests that the model and data set under analysis are experiencing an increasing rate
of events or failures as time goes. Figure 4 discussed non-parameter plots distribution for data set 1 as
Box-plot, Violine, and Kernal density. As well as, Figure 5 illustrates the PDF, empirical CDFs and
probability plots, respectively, of the EOIWW distribution. Figures 4 and 5 confirm that the EOIWW
distribution is fitting for data set 1. Therefore, we should be confirm that the EOIWW distribution is
fit of this data set 1.

Table 6 presents a comparison of MLE and BEs using standard error (SE) as the metric. It’s worth
noting that BEs demonstrates smaller SE values compared to MLEs.
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Figure 4. Non-parameter plots distribution for data set 1

Figure 6 displays trace plots and convergence plots for the parameters obtained using the MCMC
technique for the EOIWW distribution. In the figure, the posterior density of MCMC results for each
parameter is depicted in the center, showing a symmetric normal distribution that closely resembles the
proposed distribution. Figure 7 discussed profile likelihood for parameters of EOIW-W distribution for
data set 1.

Data Set 2:
The second data set represents 34 observations of vinyl chloride data obtained from clean up gradi-

ent ground-water monitoring wells in mg/L. the data are obtained from [49] and recorded as follows:
5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3,

1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2.
Results in Table 7, indicate that the EOIWW distribution is the better fit than the other competitive

distributions for this data set based on the selected analytical measures.
Figure 8 displays a TTT plot and the HF for the EOIWW distribution. The TTT plot, provides a

visual representation for assessing the time to failure or time to an event within a dataset 2. In Figure
8, an decreasing TTT line that falls below a central line suggests that the cumulative probability of
an event (typically a failure) is decreasing over time, and it’s doing so at a rate faster than expected or
compared to a reference line (the central line). This indicates that the system or process is experiencing
more failures at a higher rate than anticipated or compared to a standard performance. A J-shaped
HF line implies a non-constant hazard rate. Initially, the hazard rate is relatively low, indicating a
period of lower risk. However, as time progresses, it sharply increases, signifying an escalating risk
of events or failures. This J-shaped pattern is characteristic of certain types of distributions, such
as the Weibull distribution. In summary, when the TTT line is both increasing and situated below
the central line, and the HF line has a J-shaped pattern, it suggests that the system or data under
analysis is experiencing an accelerating rate of events or failures as time advances. This could indicate a
system that is deteriorating or becoming less reliable over time, and the increasing hazard rate signifies

Computational Journal of Mathematical and Statistical Sciences Volume 3, Issue 2, 359–388



376

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

F
(x

)

x

F
re

q
u
e
n
c
y

0 1 2 3 4 5
0
.0

0
.2

0
.4

probability(x)

F
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 5. Fitting plots of EOIWW distribution: data set 1

a sudden surge in the risk of events or failures after an initial period of lower risk. This may call
for closer monitoring and possible corrective actions to address the rising failure rate. Additionally,
Figure 8 presents the PDF, empirical CDFs, and probability plots for the EOIWW distribution. By
examining Figures 8, 9 and 10, we can confirm that the EOIWW distribution is a suitable fit for data
set 2. Consequently, we can assert with confidence that the EOIWW distribution is appropriate for
this specific dataset 2. Figure 9 discussed non-parameter plots distribution for data set 2 as Box-plot,
Violine, and Kernal density.

Table 8 provides a side-by-side evaluation of MLE and BE using the SE as the measure. Notably, the
BEs exhibit smaller SE values in comparison to the MLEs. Figure 11 exhibits profile for parameters
of EOIWW distribution for data set 2. Figure 12 exhibits trace plots and convergence plots for the
parameters derived through the MCMC method for the EOIWW distribution. Within the figure, the
central representation illustrates the posterior density of MCMC results for each parameter, revealing
a symmetric normal distribution closely resembling the proposed distribution.
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Table 2. ML and Bayesian estimation based on symmetric and asymetic loss function: Case
1 and 2

MLE SELF LINEX c=-0.5 LINEX c=1.25
Case n RAB MSE LACI CP RAB MSE LCCI RAB MSE LCCI RAB MSE LCCI

1

35

θ 1.6462 3.0418 4.4580 98.2% 0.1459 0.0778 0.9403 0.1717 0.0856 0.9610 0.0827 0.0613 0.8761
α 0.1217 0.0164 0.4423 94.8% 0.2108 0.0153 0.4079 0.2050 0.0255 0.4122 0.2248 0.0254 0.3887
β 0.4523 0.1449 4.4580 98.2% 0.1761 0.0287 0.5848 0.1703 0.0292 0.5941 0.1901 0.0276 0.5501
µ 0.1825 0.0363 0.4423 94.8% 0.1485 0.0087 0.3257 0.1142 0.0089 0.3306 0.0631 0.0085 0.3174
λ 0.3835 0.1444 4.4580 98.2% 0.3077 0.1086 1.1006 0.3097 0.1207 1.1247 0.2304 0.0829 1.0093

60

θ 1.3834 2.4995 2.7498 91.8% 0.0288 0.0195 0.5227 0.0027 0.0198 0.5268 0.0168 0.0190 0.5196
α 0.0899 0.0099 0.3473 94.8% 0.2029 0.0082 0.2317 0.2028 0.0177 0.2321 0.2134 0.0182 0.2316
β 0.4463 0.1290 2.7498 91.8% 0.1621 0.0158 0.2684 0.1621 0.0157 0.2681 0.1822 0.0161 0.2697
µ 0.0944 0.0153 0.3473 94.8% 0.1224 0.0077 0.2310 0.1121 0.0076 0.2311 0.0613 0.0079 0.2304
λ 0.3850 0.1001 2.7498 91.8% 0.1191 0.0256 0.5891 0.1251 0.0265 0.5983 0.1039 0.0236 0.5722

100

θ 1.2539 2.3829 1.6742 95.0% 0.0237 0.0129 0.4319 0.0023 0.0129 0.4350 0.0146 0.0130 0.4302
α 0.0607 0.0063 0.2881 94.3% 0.1924 0.0062 0.1489 0.2004 0.0161 0.1489 0.2045 0.0166 0.1488
β 0.4269 0.1274 1.6742 95.0% 0.1521 0.0131 0.1894 0.1521 0.0130 0.1887 0.1802 0.0133 0.1920
µ 0.0330 0.0053 0.2881 94.3% 0.1140 0.0051 0.2051 0.1038 0.0075 0.2062 0.0601 0.0077 0.2011
λ 0.3464 0.0910 1.6742 95.0% 0.1025 0.0159 0.4065 0.1209 0.0164 0.4138 0.1014 0.0147 0.3970

200

θ 1.2053 2.0928 1.5392 96.3% 0.0236 0.0056 0.2730 0.0023 0.0056 0.2695 0.0139 0.0057 0.2770
α 0.0506 0.0032 0.1971 95.8% 0.1825 0.0030 0.0769 0.1925 0.0156 0.0766 0.2005 0.0159 0.0785
β 0.3973 0.1132 1.3917 96.3% 0.1492 0.0102 0.1210 0.1491 0.0102 0.1201 0.1793 0.0103 0.1230
µ 0.0240 0.0019 0.1971 95.8% 0.1035 0.0018 0.1309 0.1016 0.0075 0.1308 0.0596 0.0077 0.1312
λ 0.3066 0.0910 1.3917 96.3% 0.1022 0.0087 0.2727 0.1124 0.0089 0.2767 0.1002 0.0082 0.2670

2

35

θ 0.0381 0.2762 2.0618 94.5% 0.1603 0.0692 0.9156 0.1868 0.0767 0.9455 0.0968 0.0543 0.8438
α 0.1202 0.0444 0.7927 95.0% 0.0692 0.0223 0.5350 0.0790 0.0235 0.5441 0.0453 0.0195 0.5044
β 0.3705 0.1467 2.0618 94.5% 0.1222 0.0392 0.6266 0.1373 0.0423 0.6511 0.0861 0.0327 0.5892
µ 0.1762 0.3986 0.7927 95.0% 0.0045 0.1356 1.4873 0.0059 0.1377 1.4932 0.0300 0.1356 1.4654
λ 0.0305 0.1501 2.0618 94.5% 0.0040 0.1492 1.5187 0.0154 0.1642 1.5256 0.0241 0.1540 1.4847

60

θ 0.0379 0.2064 1.7810 94.3% 0.0079 0.0148 0.4763 0.0129 0.0150 0.4825 0.0046 0.0143 0.4615
α 0.1074 0.0317 0.6655 96.8% 0.0107 0.0053 0.2770 0.0131 0.0053 0.2799 0.0047 0.0051 0.2706
β 0.2664 0.0989 1.7810 94.3% 0.0229 0.0081 0.3397 0.0258 0.0082 0.3414 0.0155 0.0078 0.3393
µ 0.1407 0.2888 0.6655 96.8% 0.0045 0.0253 0.6013 0.0057 0.0254 0.6005 0.0290 0.0253 0.5973
λ 0.0301 0.1466 1.7810 94.3% 0.0016 0.0225 0.5985 0.0030 0.0226 0.6013 0.0056 0.0224 0.5957

100

θ 0.0347 0.1645 1.5888 95.5% 0.0075 0.0113 0.4129 0.0042 0.0114 0.4139 0.0046 0.0111 0.4099
α 0.0512 0.0227 0.5819 96.2% 0.0080 0.0040 0.2429 0.0097 0.0041 0.2438 0.0040 0.0040 0.2387
β 0.1500 0.0582 1.5888 95.5% 0.0210 0.0054 0.2869 0.0230 0.0055 0.2895 0.0146 0.0053 0.2841
µ 0.0838 0.1725 0.5819 96.2% 0.0015 0.0158 0.4797 0.0046 0.0157 0.4812 0.0040 0.0159 0.4861
λ 0.0235 0.1374 1.5888 95.5% 0.0015 0.0168 0.5221 0.0017 0.0168 0.5207 0.0055 0.0170 0.5218

200

θ 0.0030 0.0796 1.1068 95.0% 0.0068 0.0047 0.2602 0.0042 0.0047 0.2620 0.0042 0.0047 0.2591
α 0.0291 0.0125 0.4340 94.3% 0.0036 0.0017 0.1548 0.0043 0.0017 0.1549 0.0019 0.0017 0.1543
β 0.0878 0.0262 1.1068 95.0% 0.0055 0.0019 0.1657 0.0063 0.0019 0.1650 0.0036 0.0019 0.1659
µ 0.0418 0.0742 0.4340 94.3% 0.0014 0.0066 0.3081 0.0023 0.0066 0.3086 0.0007 0.0065 0.3063
λ 0.0077 0.0448 1.1068 95.0% 0.0000 0.0067 0.3241 0.0005 0.0067 0.3236 0.0011 0.0067 0.3235
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Table 3. ML and Bayesian estimation based on symmetric and asymetic loss function: Case
3 and 4

MLE SELF LINEX c=-0.5 LINEX c=1.25
Case n RAB MSE LACI CP RAB MSE LCCI RAB MSE LCCI RAB MSE LCCI

3

35

θ 0.0248 0.4001 2.4812 94.3% 0.1180 0.0711 0.9571 0.1382 0.0739 0.9795 0.0568 0.0564 0.8787
α 0.0740 0.0711 1.0358 93.3% 0.0970 0.0271 0.5551 0.1073 0.0291 0.5705 0.0722 0.0230 0.5291
β 0.1141 0.5565 2.4812 94.3% 0.0040 0.1977 1.7261 0.0114 0.2021 1.7409 0.0311 0.1923 1.6789
µ 0.2577 0.7406 1.0358 93.3% 0.0020 0.1515 1.4414 0.0121 0.1551 1.4574 0.0231 0.1462 1.4003
λ 0.0715 0.1344 2.4812 94.3% 0.0140 0.0837 1.1842 0.0068 0.0840 1.1699 0.0317 0.0857 1.1678

60

θ 0.0231 0.3198 2.1994 94.2% 0.0292 0.0156 0.4956 0.0080 0.0158 0.4961 0.0096 0.0151 0.4893
α 0.0388 0.0500 0.8737 93.5% 0.0174 0.0050 0.2483 0.0197 0.0051 0.2483 0.0116 0.0048 0.2457
β 0.0612 0.4183 2.1994 94.2% 0.0031 0.0255 0.5920 0.0048 0.0256 0.5919 0.0012 0.0254 0.5849
µ 0.1630 0.4306 0.8737 93.5% 0.0017 0.0244 0.5763 0.0092 0.0244 0.5748 0.0058 0.0247 0.5809
λ 0.0372 0.1090 2.1994 94.2% 0.0017 0.0168 0.5076 0.0035 0.0168 0.5090 0.0050 0.0168 0.5071

100

θ 0.0192 0.2191 1.8275 95.0% 0.0209 0.0102 0.3986 0.0078 0.0102 0.3981 0.0093 0.0101 0.3999
α 0.0341 0.0343 0.7217 94.8% 0.0163 0.0029 0.2124 0.0177 0.0030 0.2130 0.0103 0.0029 0.2114
β 0.0526 0.3233 1.8275 95.0% 0.0005 0.0162 0.4897 0.0006 0.0162 0.4873 0.0010 0.0163 0.4894
µ 0.1263 0.3205 0.7217 94.8% 0.0015 0.0147 0.4945 0.0013 0.0148 0.4945 0.0048 0.0146 0.4909
λ 0.0269 0.0858 1.8275 95.0% 0.0015 0.0115 0.4180 0.0032 0.0115 0.4171 0.0041 0.0118 0.4219

200

θ 0.0164 0.1397 1.4609 94.5% 0.0048 0.0049 0.2798 0.0062 0.0049 0.2796 0.0011 0.0048 0.2778
α 0.0166 0.0196 0.5480 95.3% 0.0011 0.0011 0.1288 0.0016 0.0011 0.1292 0.0004 0.0011 0.1280
β 0.0130 0.2065 1.4609 94.5% 0.0004 0.0078 0.3360 0.0009 0.0078 0.3370 0.0008 0.0078 0.3361
µ 0.0766 0.1793 0.5480 95.3% 0.0004 0.0063 0.3083 0.0000 0.0063 0.3097 0.0015 0.0063 0.3101
λ 0.0196 0.0700 1.4609 94.5% 0.0015 0.0053 0.2896 0.0018 0.0053 0.2900 0.0005 0.0053 0.2904

4

35

θ 0.0444 0.1475 1.9506 94.0% 0.0083 0.1439 1.7055 0.0217 0.2046 1.7145 0.0244 0.1945 1.6659
α 0.0132 0.2686 2.0307 95.2% 0.0121 0.1288 1.3516 0.0220 0.1334 1.3652 0.0121 0.1216 1.2810
β 0.0319 0.0422 1.8506 94.0% 0.0073 0.0418 1.6283 0.0052 0.1815 1.6320 0.0374 0.1735 1.5558
µ 0.1084 0.3755 2.0307 95.2% 0.0233 0.1080 1.2537 0.0322 0.1144 1.2671 0.0045 0.0966 1.1963
λ 0.0129 0.0096 1.5061 94.0% 0.0085 0.0094 0.7510 0.0056 0.0367 0.7483 0.0156 0.0366 0.7550

60

θ 0.0221 0.1205 1.7659 94.8% 0.0023 0.0255 0.6422 0.0040 0.0256 0.6431 0.0019 0.0256 0.6339
α 0.0022 0.2332 2.0026 96.0% 0.0055 0.0226 0.5909 0.0040 0.0226 0.5907 0.0093 0.0228 0.5933
β 0.0309 0.0417 1.7659 94.8% 0.0062 0.0275 0.6348 0.0023 0.0276 0.6301 0.0036 0.0275 0.6472
µ 0.1000 0.3481 2.0026 96.0% 0.0020 0.0202 0.5784 0.0012 0.0202 0.5775 0.0037 0.0204 0.5790
λ 0.0116 0.0081 1.4766 94.8% 0.0018 0.0058 0.3033 0.0023 0.0058 0.3035 0.0007 0.0058 0.3021

100

θ 0.0016 0.0435 0.8181 94.5% 0.0021 0.0182 0.5238 0.0014 0.0182 0.5228 0.0016 0.0184 0.5298
α 0.0021 0.0955 1.2104 94.5% 0.0014 0.0150 0.4876 0.0004 0.0150 0.4901 0.0040 0.0151 0.4872
β 0.0105 0.0127 0.8181 94.5% 0.0056 0.0117 0.5110 0.0005 0.0167 0.5055 0.0033 0.0167 0.5113
µ 0.0386 0.1117 1.2104 94.5% 0.0019 0.0114 0.4634 0.0012 0.0136 0.4631 0.0036 0.0136 0.4687
λ 0.0049 0.0039 0.8181 94.5% 0.0005 0.0031 0.2196 0.0008 0.0031 0.2197 0.0002 0.0031 0.2192

200

θ 0.0015 0.0372 0.7560 94.3% 0.0014 0.0063 0.2878 0.0013 0.0063 0.2874 0.0003 0.0063 0.2899
α 0.0020 0.0815 1.1194 94.5% 0.0014 0.0059 0.3046 0.0003 0.0059 0.3038 0.0004 0.0059 0.3069
β 0.0093 0.0119 0.7560 94.3% 0.0017 0.0066 0.3171 0.0004 0.0066 0.3162 0.0028 0.0066 0.3175
µ 0.0259 0.0847 1.1194 94.5% 0.0008 0.0055 0.2900 0.0004 0.0055 0.2894 0.0018 0.0055 0.2908
λ 0.0029 0.0036 0.7560 94.3% 0.0001 0.0013 0.1417 0.0002 0.0013 0.1420 0.0002 0.0013 0.1411
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Table 4. ML and Bayesian estimation based on symmetric and asymetic loss function: Case
5 and 6

MLE SELF LINEX c=-0.5 LINEX c=1.25
Case n RAB MSE LACI CP RAB MSE LCCI RAB MSE LCCI RAB MSE LCCI

5

35

θ 0.0881 0.6282 3.1079 94.3% 0.0925 0.1180 1.2924 0.0248 0.1242 1.3086 0.0516 0.1074 1.2438
α 0.0863 0.0871 1.1399 93.2% 0.0967 0.0270 0.5772 0.1063 0.0289 0.5876 0.0733 0.0231 0.5429
β 0.1747 0.8526 3.1079 94.3% 0.0188 0.2074 1.6936 0.0058 0.2113 1.7077 0.0503 0.2060 1.6287
µ 0.2606 1.5598 1.1399 93.2% 0.0075 0.1985 1.6484 0.0093 0.2010 1.6359 0.0209 0.1994 1.6188
λ 0.0446 0.0539 3.1079 94.3% 0.0198 0.0394 0.7000 0.0156 0.0390 0.6999 0.0303 0.0416 0.7170

60

θ 0.0870 0.6037 3.0117 95.5% 0.0732 0.0242 0.6248 0.0098 0.0243 0.6205 0.0483 0.0241 0.6237
α 0.0508 0.0646 0.9898 93.7% 0.0176 0.0055 0.2862 0.0198 0.0055 0.2887 0.0120 0.0053 0.2829
β 0.1059 0.6013 3.1172 95.5% 0.0049 0.0263 0.6336 0.0032 0.0263 0.6347 0.0093 0.0267 0.6293
µ 0.1626 0.9274 0.9898 93.7% 0.0069 0.0280 0.6487 0.0057 0.0278 0.6488 0.0099 0.0286 0.6493
λ 0.0276 0.0406 3.1172 95.5% 0.0013 0.0076 0.3392 0.0021 0.0077 0.3397 0.0017 0.0076 0.3397

100

θ 0.0734 0.3448 2.3007 95.0% 0.0120 0.0169 0.5069 0.0097 0.0168 0.5065 0.0178 0.0171 0.5042
α 0.0412 0.0430 0.8077 95.2% 0.0131 0.0032 0.2060 0.0144 0.0032 0.2066 0.0097 0.0031 0.2046
β 0.0783 0.4242 2.3007 95.0% 0.0013 0.0188 0.5311 0.0013 0.0188 0.5274 0.0041 0.0190 0.5314
µ 0.1272 0.6389 0.8077 95.2% 0.0028 0.0160 0.4997 0.0021 0.0159 0.5007 0.0046 0.0163 0.4940
λ 0.0270 0.0299 2.3007 95.0% 0.0009 0.0046 0.2585 0.0004 0.0046 0.2584 0.0016 0.0046 0.2572

200

θ 0.0616 0.2823 2.0730 95.8% 0.0026 0.0072 0.3321 0.0016 0.0072 0.3309 0.0051 0.0072 0.3305
α 0.0088 0.0297 0.6761 96.0% 0.0016 0.0016 0.1537 0.0022 0.0016 0.1541 0.0008 0.0016 0.1527
β 0.0189 0.3373 2.0730 95.8% 0.0012 0.0072 0.3343 0.0012 0.0072 0.3326 0.0009 0.0072 0.3358
µ 0.0586 0.3153 0.6761 96.0% 0.0004 0.0074 0.3262 0.0007 0.0074 0.3262 0.0003 0.0074 0.3258
λ 0.0151 0.0289 2.0730 95.8% 0.0008 0.0021 0.1729 0.0003 0.0021 0.1726 0.0008 0.0021 0.1734

6

35

θ 0.1673 0.6551 3.1201 94.0% 0.0100 0.1156 1.3036 0.0301 0.1233 1.3316 0.0388 0.1015 1.2138
α 0.1296 0.0847 1.1000 94.5% 0.1048 0.0414 0.7040 0.1191 0.0453 0.7155 0.0704 0.0334 0.6800
β 0.0778 0.5263 3.1201 94.0% 0.0072 0.1856 1.6165 0.0050 0.1879 1.6123 0.0374 0.1856 1.6371
µ 0.4130 0.6590 1.1000 94.5% 0.0158 0.0915 1.1637 0.0272 0.0954 1.1880 0.0119 0.0846 1.0940
λ 0.1704 0.1220 3.1201 94.0% 0.0099 0.0666 1.0183 0.0053 0.0682 1.0166 0.0339 0.0646 0.9895

60

θ 0.1352 0.4878 2.6981 95.0% 0.0090 0.0224 0.5799 0.0044 0.0225 0.5832 0.0074 0.0224 0.5743
α 0.0817 0.0743 1.0522 93.8% 0.0245 0.0084 0.3537 0.0270 0.0085 0.3586 0.0181 0.0081 0.3490
β 0.0635 0.3923 2.6981 95.0% 0.0043 0.0301 0.6577 0.0046 0.0303 0.6536 0.0031 0.0298 0.6575
µ 0.2793 0.3814 1.0522 93.8% 0.0056 0.0184 0.5073 0.0036 0.0184 0.5089 0.0106 0.0183 0.5149
λ 0.1260 0.0901 2.6981 95.0% 0.0033 0.0127 0.4466 0.0052 0.0128 0.4521 0.0014 0.0125 0.4430

100

θ 0.0983 0.3748 2.3767 95.7% 0.0085 0.0159 0.4947 0.0042 0.0158 0.4939 0.0061 0.0160 0.5050
α 0.0729 0.0456 0.8202 95.2% 0.0087 0.0043 0.2515 0.0102 0.0044 0.2528 0.0048 0.0042 0.2489
β 0.0388 0.3134 2.3767 95.7% 0.0023 0.0166 0.5056 0.0012 0.0166 0.5015 0.0025 0.0167 0.5029
µ 0.2107 0.2520 0.8202 95.2% 0.0046 0.0118 0.4301 0.0035 0.0119 0.4313 0.0012 0.0116 0.4278
λ 0.0976 0.0720 2.3767 95.7% 0.0032 0.0079 0.3362 0.0045 0.0079 0.3399 0.0011 0.0079 0.3350

200

θ 0.0606 0.2675 2.0178 94.8% 0.0048 0.0063 0.3095 0.0039 0.0063 0.3108 0.0072 0.0064 0.3062
α 0.0200 0.0281 0.6563 95.2% 0.0038 0.0022 0.1728 0.0045 0.0022 0.1734 0.0021 0.0021 0.1711
β 0.0027 0.2494 2.0178 94.8% 0.0005 0.0069 0.3118 0.0001 0.0069 0.3117 0.0017 0.0069 0.3128
µ 0.1155 0.1163 0.6563 95.2% 0.0025 0.0050 0.2839 0.0031 0.0050 0.2836 0.0010 0.0050 0.2845
λ 0.0675 0.0612 2.0178 94.8% 0.0013 0.0035 0.2263 0.0008 0.0035 0.2269 0.0010 0.0035 0.2262
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Table 5. MLE and BE for parameters of EOIWW distribution

ML Bayesian
Estimates SE Estimates SE

θ 108.0009 793.7478 108.3383 37.3926
α 1.1787 2.5512 1.7648 1.1904
β 0.0108 0.0142 0.0211 0.0156
µ 1.1847 2.4984 0.9064 0.5091
λ 0.6257 3.4024 1.0145 0.6773

Table 6. Analytical results for the data set 1

Model H1 H2 H3 H4 H5

EOIWW 79.2238 89.2238 91.7238 96.2298 0.064
MWW 145.130 155.130 157.630 162.136 0.223
NMW 242.501 250.051 251.651 255.656 0.942

AW 159.642 167.642 169.242 173.246 0.283
W 92.751 96.751 97.196 99.554 0.134

Table 7. Analytical results for the data set 2

Model H1 H2 H3 H4 H5

EOIWW 107.694 117.694 119.837 125.326 0.082
IWW 108.470 116.47 117.850 122.576 0.087

MWW 190.306 200.306 202.306 207.938 0.598
NMW 314.807 322.807 324.186 328.912 1

AW 221.798 229.798 231.178 235.904 0.982
WW 111.160 119.160 120.539 125.265 0.094
W 117.253 121.253 121.640 124.306 0.113

Table 8. MLE and BE for parameters of EOIWW distribution: data set 2

ML Bayesian
Estimates SE Estimates SE

θ 0.4518 6.2905 0.2578 0.2600
α 1.1216 5.2383 0.8783 0.4424
β 0.0696 0.6054 0.1357 0.0715
µ 7.0474 0.1665 6.9482 0.1586
λ 0.1231 0.2232 0.1221 0.0380
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Figure 6. MCMC plots for parameters of EOIW-W distribution: data set 1
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Figure 7. Profile for parameters of EOIW-W distribution: data set 1

Figure 8. TTT plot and hazared of EOIWW distribution: data set 2
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Figure 12. MCMC plots for parameters of EOIWW distribution: data set 2
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7. Concluding Remarks

In this paper, we propose a novel generator to obtain better distribution flexibility called the
extended odd inverse Weibull-generator. This generator is thought to be a generalization of three
well-known families. Effective continuous symmetric and asymmetric models that may outperform
the baseline model can be obtained from the recently created family. The statistical characteristics of
the family, such as the moments, incomplete moments, entropy measure,mean deivation and density
function expansion, are investigated. By employing the generated family, some popular models
are offered as unique scenarios. Using the Weibull distribution as a baseline model, we study and
thoroughly investigate a five-parameter special member of the extended odd inverse Weibull-G family.
In order to analyse the parameters’ behaviour, the parameters were examined using Bayesian and
traditional methods in conjunction with a comprehensive simulation analysis. The RAB and MSEs
of the estimates reduced as the sample size rose, indicating a satisfactory simulation outcome. In
comparison with the MLEs, the Bayes estimates perform well. To further highlight the fitted model’s
adaptability and show how it performs better in practice than other well-known models according
to various model selection criteria and goodness-of-fit tests, two real-world data scenarios have
been presented. In closing, we suggest delving deeper into the various EOIW-G family models and
associated estimating techniques, including percentile and product spacing estimation approaches,
among others.
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