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1. Introduction

The mixture models were applied to model population heterogeneity, generalize distributional as-
sumptions, clustering and classification, etc. Fields that are used successfully in mixture distributions
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include astronomy, biology, genetics, medicine, psychiatry, economics, engineering and marketing,
among many other fields in biological, physical and social sciences.

Newcomb [30] pioneered the concept of the finite mixture distribution for modeling outliers. Pear-
son [32] considered a mixture of two univariate Gaussian distributions to estimate the parameters of
the model using the method of moments to analyze a dataset containing ratios of the forehead to body
lengths for 1,000 crabs. Several authors studied finite mixture models for different distributions. For
example, Jorgensen et al. [23] studied the mixture of the inverse Gaussian distribution with its com-
plementary reciprocal. Ahmed et al. [3] obtained approximate Bayes estimators for the parameters
of the mixture of two Weibull distributions under Type-II censoring. AL-Hussaini et al. [5] con-
cerned with the statistical properties of the finite mixture of two Gompertz lifetime models. Jaheen
[22] implemented both maximum likelihood (ML) and Bayesian approaches to discuss the problem
of estimating the parameters using the finite mixture of two exponential distributions based on record
statistics. Shawky and Bakoban [33] used both ML and Bayesian methods to estimate the parameters
of the model, reliability, and failure rate functions of two-component finite mixtures of exponenti-
ated gamma distribution. Mahmoud and Ghazal [25] derived characteristics of a finite mixture of two
components of exponentiated family of distributions based on recurrence relations for moment and
conditional moment generating functions of generalized order statistics.

Ateya and Al Khald [7] studied the finite mixture of truncated generalized Cauchy distribution based
on Type-II censored samples and progressively Type II censoring. In addition, Tahir et al. [34] con-
structed the three-component mixture of exponential distributions from the Bayesian viewpoint based
on Type-II doubly censoring sampling scheme. Kharazmi et al. [24] obtained non-Bayes and Bayes es-
timators based on the complete sample from the two-component mixture of Topp–Leone distribution.
Dey et al. [16] introduced a mixture of the Marshall–Olkin extended Weibull distribution for efficient
modeling of failure, survival and COVID-19 data under non-Bayesian and Bayesian approaches based
on Type-II censored data. Recently, Usman et al. [35] presented the mixture cure rate model for right
censored survival data and Crisci et al. [12] provided a method based on quantiles to estimate the
parameters of a finite mixture of Fréchet distributions for a large sample of dependent data.

A finite mixture model is a convex combination of two or more probability density functions. Thus,
the random variable X is said to have a finite mixture distribution with k components if the probability
density function (pdf) of x can be written in the following form

f (x) =
k∑

i=1

pigi (x) . (1.1)

Then, the cumulative distribution function (cdf) of a finite mixture distribution is

F (x) =
k∑

i=1

piGi (x) , (1.2)

where p′i s are non-negative quantities with the sum one where

0 ≤ pi ≤ 1 , i = 1, · · · , k,

and
k∑

i=1

pi = 1.
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The quantities p′i s are called the mixing proportion or weights also the gi (x) in (1.1) and Gi (x) in (1.2)
are called the pdf and cdf of ith components of the mixture. [See Mclachlan and Peel [27]].

Several families of distributions are constructed by adding one or more parameters to a distribution
function, which let it richer and more flexible to analyze data. Some of these families of distribu-
tions are Marshall-Olkin generated family by Marshall and Olkin [26], beta-G by Eugene et al. [17],
Kumaraswamy-G by Cordeiro and Castro [13], transformed transformer (T-X) family by Alzaatreh et
al. [8], exponentiated T-X by Alzaghal et al. [9], Weibull-G by Bourguignon et al. [11], exponentiated
half-logistic by Cordeiro et al. [14], Lomax-G by Cordeiro et al. [15], Zografos-Balakrishnan-G by
Nadarajah et al. [29] and Topp-Leone G family by Hassan et al. [20].

Gupta et al. [19] defined the cdf and pdf of exponentiated distributions for a random variable X as

F (x) = [G (x)]α, (1.3)

and

f (x) = αg (x) [G (x)]α−1, (1.4)

where
α > 0 is a shape parameter and G (x) is a cdf of the baseline distribution.
Abd AL-Fattah et al. [1] derived inverted Kumaraswamy (IKum) distribution from Kumaraswamy

(Kum) distribution using the transformation X = 1
Y −1. Then, the pdf and cdf for the IKum distribution

with shape parameters λ and β are, respectively, given by

g (x; λ, β) = λβ(1 + x)−(λ+1)[1 − (1 + x)−λ]β−1
, x > 0, λ, β > 0, (1.5)

and
G (x; λ, β) =

[
1 − (1 + x)−λ

]β
, x > 0, λ, β > 0. (1.6)

Identifiability is a very important concept associated with mixture models since it gives a unique rep-
resentation for a class of mixtures. For more details, see, AL-Hussaini and Ahmad [4], Everitt and
Hand [18], Ahmad [2] and Ateya [6] who proved the identifiability of a finite mixture of generalized
exponential distributions.

In this study, the mixture of two components exponentiated (ME) family with some properties and
estimation are discussed in Section 2. In Section 3, the mixture of two components exponentiated
inverted Kumaraswamy (MEIK) distribution is presented as a sub-model from the ME family after
verifying the identifiability property of two components from exponentiated inverted Kumaraswamy
(EIK) distribution. Also, some statistical properties and the ML estimators for the unknown parameters
are also obtained. In Section 4, a simulation study is conducted to assess the performance of the ML
estimators of the parameters of the MEIK distribution. Finally, in Section 5, two real data sets are
applied to ensure the theoretical results and to prove the flexibility and applicability of the MEIK
distribution.

2. Mixture of Two Components of Exponentiated Family

A density function for the ME family with two mixing proportions (k = 2) in (1.1) takes the form

f (x) = pα1g1 (x) [G1 (x)]α1−1 + α2 (1 − p) g2 (x) [G2 (x)]α2−1, x > 0, α1, α2> 0, (2.1)
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Then, the cdf of the ME is,

F (x) = p[G1 (x)]α1 + (1 − p) [G2 (x)]α2 , x > 0, α1, α2> 0. (2.2)

The corresponding reliability function (rf), hazard rate function (hrf) and reversed hazard rate function
(rhrf), respectively, are

S (x) = 1 − p[G1 (x)]α1 − (1 − p) [G2 (x)]α2 , (2.3)

h (x) =
pα1g1 (x) [G1 (x)]α1−1 + α2 (1 − p) g2 (x) [G2 (x)]α2−1

1 − p[G1 (x)]α1 − (1 − p) [G2 (x)]α2
, (2.4)

and

rh (x) =
pα1g1 (x) [G1 (x)]α1−1 + α2 (1 − p) g2 (x) [G2 (x)]α2−1

p[G1 (x)]α1 + (1 − p) [G2 (x)]α2
. (2.5)

2.1. Some properties of the mixture of two components exponentiated family

In this subsection, some statistical properties of the ME family are derived.

2.1.1. Quantile function

The quantile function of the ME family can be obtained from solving the following equation

ln
(
p
[
G1

(
xq

)]α1
+ (1 − p)

[
G2

(
xq

)]α2
)
− ln (q) = 0. (2.6)

Also, a random sample from ME family can be generated using the uniform distribution in (2.6).

2.1.2. Moments

Let X ∼ ME (x, α1, α2, p) , then the rth moment of ME family is given by

µ′r = E (xr) =
2∑

j=1

p jE j (xr) = pE1 (xr) + (1 − p) E2 (xr)

= p
∫ ∞

0
xrα1g1 (x) [G1(x)]α1−1dx + (1 − p)

∫ ∞

0
xrα2g2 (x) [G2 (x)]α2−1dx.

(2.7)

Using the series representation as:

zν =
∞∑

i=0

(lnz )i

i!
νi. (2.8)

Then, the cdf’s [G1(x)]α1−1 and [G2 (x)]α2−1 can be rewritten as follows:

[G1(x)]α1−1 =

∞∑
j1=0

(α1 − 1) j1 (lnG1(x) ) j1

j1!
,

and

[G2(x)]α2−1 =

∞∑
j2=0

(α2 − 1) j2 (lnG2(x) ) j2

j2!
.
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Then,

µ′r = pα1

∫ ∞

0
xrg1 (x)

∞∑
j1=0

(α1 − 1) j1

j1!
[lnG1(x) ] j1dx + (1 − p)α2

∫ ∞

0
xrg2 (x)

∞∑
j2=0

(α2 − 1) j2

j2!
[lnG2(x) ] j2dx

µ′r =

∞∑
j1=0

(α1 − 1) j1

j1!
a j1,r +

∞∑
j2=0

(α2 − 1) j2

j2!
a j2,r.

(2.9)

where

a j1,r = pα1

∫ ∞

0
xrg1 (x) [lnG1(x) ] j1dx,

and

a j2,r = (1 − p)α2

∫ ∞

0
xrg2 (x) [lnG2(x) ] j2dx.

2.1.3. Moment generating function

The moment generating function of the ME family is given by

Mx (t) = E
(
etx) = ∫ ∞

0
etx f (x) dx

= pα1

∫ ∞

0
etxg1 (x) [G1(x)]α1−1dx + (1 − p)α2

∫ ∞

0
etxg2 (x) [G2(x)]α2−1dx.

(2.10)

Expanding (etx) using Taylor series as given below

e(tx) =

∞∑
i=0

(tx)i

i!
=

∞∑
i=0

ti

i!
xi, (2.11)

then,

Mx (t) = pα1

∫ ∞

0

∞∑
i=0

ti

i!
xig1 (x) [G1(x)]α1−1dx + (1 − p)α2

∫ ∞

0

∞∑
i=0

ti

i!
xig2 (x) [G2(x)]α2−1dx

Mx (t) =
∞∑

i=0

ti

i!
µ′i .

(2.12)

2.1.4. Order statistics

The pdf of the ith order statistic for a random sample x1, x2, x3, · · · , xn from the ME family is

fi,n (x) =
n!

(n − i) ! (i − 1) !
f (x) [F (x)]i−1[1 − F (x)]n−i

=
n!

(n − i) ! (i − 1) !

n−i∑
r=0

(−1)r
(n − i

r

)
f (x) [F (x)]i+r−1,

(2.13)

Computational Journal of Mathematical and Statistical Sciences Volume 3, Issue 2, 316–340



321

where,

[1 − F (x)]n−i =

n−i∑
r=0

(−1)r
(n − i

r

)
[F (x)]r.

Then, the pdf of the ith order statistics for the ME family can be obtained by substituting (2.1) and (2.2)
into (2.13), thus

fi,n (x) =
n!

(n − i) ! (i − 1) !

n−i∑
r=0

(−1)r
(n − i

r

) {
pα1g1 (x) [G1 (x)]α1−1 + α2 (1 − p) g2 (x) [G2 (x)]α2−1

}
×

[
p[G1 (x)]α1 + (1 − p) [G2 (x)]α2

]i+r−1.

(2.14)

The smallest order statistics and the largest order statistics are, respectively, given by

f1,n (x) = n
n−1∑
r=0

(−1)r
(
n − 1

r

) {
pα1g1 (x) [G1 (x)]α1−1 + α2 (1 − p) g2 (x) [G2 (x)]α2−1

}
×

[
p[G1 (x)]α1 + (1 − p) [G2 (x)]α2

]r,

(2.15)

and

fn,n (x) = n
{
pα1g1 (x) [G1 (x)]α1−1 + α2 (1 − p) g2 (x) [G2 (x)]α2−1

}
×

[
p[G1 (x)]α1 + (1 − p) [G2 (x)]α2

]n−1.
(2.16)

2.2. Estimation of the mixture of two components exponentiated family

In this subsection, the ML approach can be applied to estimate the unknown parameters of the
two-components ME family.

Let x1, x2, x3, · · · , xn be a random sample from the ME family defined by (2.1). Then, the ML
estimators of θ̂ = ( p̂, α̂1, α̂2) are obtained as the solution of the nonlinear likelihood equations:

∂lnL(θ; x)
∂θ

= 0, (2.17)

where

L(θ; x) =
n∏

j=1

f
(
x j; θ

)
,

is the likelihood function formed under the assumption of independent and identically distributed ran-
dom sample x1, x2, x3, · · · , xn.

The likelihood function corresponding to the mixture density in (2.1), is given by

L(θ; x) =
n∏

j=1

[
pα1g1

(
x j

) [
G1

(
x j

)]α1−1
+ α2 (1 − p) g2

(
x j

) [
G2

(
x j

)]α2−1
]
. (2.18)
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The corresponding log-likelihood function ℓ ≡ lnL(θ| x) is

ℓ =

n∑
j=1

ln
[
pα1g1

(
x j

) [
G1

(
x j

)]α1−1
+ α2 (1 − p) g2

(
x j

) [
G2

(
x j

)]α2−1
]
. (2.19)

By differentiating ℓ in (2.19) with respect to p, α1, α2, then

∂ℓ

∂p
=

n∑
j=1

ω
(
x j, θ̂

)
= 0, (2.20)

where, ω
(
x j, θ̂

)
=

α̂1g1(x j)[G1(x j)]α̂1−1
−α̂2g2(x j)[G2(x j)]α̂2−1

p̂α̂1g1(x j)[G1(x j)]α̂1−1
+α̂2(1− p̂)g2(x j)[G2(x j)]α̂2−1 ,

∂ℓ

∂α1
=

n∑
j=1

ω1

(
x j, θ̂

)
= 0, (2.21)

where, ω1

(
x j, θ̂

)
=

p̂α̂1g1(x j)[G1(x j)]α̂1−1
ln(G1(x j))+ p̂g1(x j)[G1(x j)]α̂1−1

p̂α̂1g1(x j)[G1(x j)]α̂1−1
+α̂2(1− p̂)g2(x j)[G2(x j)]α̂2−1 ,

and

∂ℓ

∂α2
=

n∑
j=1

ω2

(
x j, θ̂

)
= 0, (2.22)

where, ω2

(
x j, θ̂

)
=
α̂2(1− p̂)g2(x j)[G2(x j)]α̂2−1

ln(G2(x j))+(1−p̂)g2(x j)[G2(x j)]α̂2−1

p̂α̂1g1(x j)[G1(x j)]α̂1−1
+α̂2(1− p̂)g2(x j)[G2(x j)]α̂2−1 .

Thus, the ML estimators of p̂, α̂1, α̂2 can be obtained by solving (2.20)-(2.22) after replacing the
basic functions with different distributions.

3. Mixture of Two Components Exponentiated Inverted Kumaraswamy Distribution

In this section, the MEIK distribution is presented as a sub-model from the ME family. Some
statistical properties of MEIK are studied.

3.1. Description of the distribution

The MEIK distribution can be obtained by substituting g (x) and G (x), respectively, from (1.5) and
(1.6) into (2.1) and (2.2) after indexing (β, λ) by i, i = 1, 2.

Thus, the pdf and cdf of MEIK distribution are

fM (x) = pα1λ1β1(1 + x)−(λ1+1)
[
1 − (1 + x)−λ1

]β1α1−1

+ α2λ2β2 (1 − p) (1 + x)−(λ2+1)
[
1 − (1 + x)−λ2

]β2α2−1
,

(3.1)

and
FM (x) = p

[
1 − (1 + x)−λ1

]α1β1
+ (1 − p)

[
1 − (1 + x)−λ2

]α2β2
. (3.2)
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The corresponding rf, hrf and rhrf, respectively, are

S M (x) = 1 − p
[
1 − (1 + x)−λ1

]α1β1
− (1 − p)

[
1 − (1 + x)−λ2

]α2β2
, (3.3)

hM (x) =
pα1β1λ1 (1 + x)−(λ1+1)

[
1 − (1 + x)−λ1

]α1β1−1
+ α2β2λ2 (1 − p) (1 + x)−(λ2+1)

[
1 − (1 + x)−λ2

]α2β2−1

1 − p
[
1 − (1 + x)−λ1

]α1β1
− (1 − p)

[
1 − (1 + x)−λ2

]α2β2
,

(3.4)
and

rhM (x) =
pα1λ1β1(1 + x)−(λ1+1)

[
1 − (1 + x)−λ1

]β1α1−1
+ α2λ2β2 (1 − p) (1 + x)−(λ2+1)

[
1 − (1 + x)−λ2

]β2α2−1

1 − p
[
1 − (1 + x)−λ1

]α1β1
− (1 − p)

[
1 − (1 + x)−λ2

]α2β2
.

(3.5)

Figure 1. Plots of the two components exponentiated inverted Kumaraswamy distribution
and their mixture at different values of the parameters

Figure 1 exhibit the pdf of the first component (α1, β1, λ1) in (a), the second component (α2, β2, λ2)
in (b) and the MEIK with parameters (α1, β1, λ1, α2, β2, λ2, p) in (c).
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Figure 2. Plots of the pdf of mixture exponentiated inverted Kumaraswamy distribution at
different values of the parameters

Figure 2 displays different shapes of the pdf for the MEIK distribution. The densities in (a) and (b)
have a unimodal curve and right skewed and the density in (c) is decreasing.

Figure 3. Plots of the hrf of mixture exponentiated inverted Kumaraswamy distribution at
different values of the parameters

Figure 3 presents different shapes of the hrf for the MEIK distribution which permit high degree for
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flexibility of the MEIK distribution The hrf in (a) has a bathtub shape, in (b) the hrf is decreasing and
in (c) it is unimodal and right skewed.

3.2. Some properties of the proposed distribution

3.2.1. Quantile function

The quantile function of the MEIK distribution can be obtained by substituting G1

(
xq

)
and G2

(
xq

)
from (1.6) into (2.6) and solving the following equation

ln
[
p
(
1 −

(
1 + xq

)−λ1
)α1β1

+ (1 − p)
(
1 −

(
1 + xq

)−λ2
)α2β2

]
− lnq = 0. (3.6)

Also, a random sample from MEIK distribution can be generated using uniform distribution in (3.6).

3.2.2. Moments

Let X ∼ MEIK
(
x, p j, α j, β j, λ j

)
distribution, then the rth moment of a MEIK distribution is given

by

µ′r(M) =E (xr) =
2∑

j=1

p jE j (xr) =
2∑

j=1

p j

∫ ∞

0
xr f (x)dx

=

2∑
j=1

p jα jλ jβ j

∫ ∞

0
xr(1 + x)−(λ j+1)[1 − (1 + x)−λ j

]α jβ j−1
dx.

(3.7)

Then,

µ′r(M) =

∞∑
k=0

2∑
j=1

(−1)k

(
α jβ j − 1

k

)
p jα jβ jλ jB(r + 1, λ j (1 + k) − r). (3.8)

where B(., .) is the beta function and λ j (1 + k) > r.
Let, r = 1 in (3.8), the mean of the MEIK distribution is

µM = µ
′
1(M) = E (x) =

∞∑
k=0

2∑
j=1

(−1)k

(
α jβ j − 1

k

)
p jα jβ jλ jB(2, λ j (1 + k) − 1). (3.9)

where B(., .) is the beta function and λ j (1 + k) > 1.

3.2.3. Moment generating function

The moment generating function of the MEIK distribution can be derived by substituting µ′r(M) of
the MEIK distribution in (3.8) into (2.12), then

Mx(M) (t) = E(etx)
∞∑

i=0

ti

i!
µ′i

Mx(M) (t) =
∞∑

i=0

∞∑
k=0

2∑
j=0

(−1)k

(
α jβ j − 1

k

)
ti

i!
p jα jβ jλ jB(r + 1, λ j (1 + k) − r).

(3.10)

where B(., .) is the beta function and λ j (1 + k) > r.
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3.2.4. Order statistics

The ith order statistics for the MEIK distribution can be obtained by substituting (3.1) and (3.2) into
(2.13); thus

fi,n(M) (x) =
n!

(n − i) ! (i − 1) !

n−i∑
r=0

(−1)r
(n − i

r

) {
pα1λ1β1(1 + x)−(λ1+1)

[
1 − (1 + x)−λ1

]α1β1−1
+

α2λ2β2 (1 − p) (1 + x)−(λ2+1)
[
1 − (1 + x)−λ2

]α2β2−1
}
×

n−i∑
r=0

{
p
[
1 − (1 + x)−λ1

]α1β1
+ (1 − p)

[
1 − (1 + x)−λ2

]α2β2
}i+r−1

.

(3.11)

Then, the corresponding smallest and largest order statistics can be obtained when
i = 1 and i = n.

3.3. Maximum likelihood estimation

This subsection focuses on deriving the ML estimators for the parameter vector θ = (pi, αi, λi, βi)
of the MEIK density based on a random sample of size n, where i = 1, 2 and p2 = 1 − p1.

The likelihood function corresponding to the MEIK density in (3.1) is given by

LM(θ; x) =
n∏

j=1

 pα1λ1β1

(
1 + x j

)−(λ1+1)
[
1 −

(
1 + x j

)−λ1
]α1β1−1

+α2λ2β2 (1 − p)
(
1 + x j

)−(λ2+1)
[
1 −

(
1 + x j

)−λ2
]α2β2−1

. (3.12)

The natural logarithm of the likelihood function is given by

ℓM ≡ lnL
(
θ; x

)
=

n∑
j=1

ln

 pα1λ1β1

(
1 + x j

)−(λ1+1)
[
1 −

(
1 + x j

)−λ1
]α1β1−1

+α2λ2β2 (1 − p)
(
1 + x j

)−(λ2+1)
[
1 −

(
1 + x j

)−λ2
]α2β2−1

 . (3.13)

By differentiating ℓM with respect to the unknown parameters θ = (pi, αi, λi, βi) of the MEIK distribu-
tion, the first derivatives are obtained as follows:

∂ℓM
∂p
=

n∑
j=1

f1

(
x j, θ̂

)
− f2

(
x j, θ̂

)
fM

(
x j, θ̂

) = 0,

∂ℓM
∂αi
=

n∑
j=1

piζi
(
x j, θ̂

)
fM

(
x j, θ̂

) = 0,

∂ℓM
∂βi
=

n∑
j=1

piηi

(
x j, θ̂

)
fM

(
x j, θ̂

) = 0, (3.14)

and
∂ℓM
∂λi
=

n∑
j=1

piϕi

(
x j, θ̂

)
fM

(
x j, θ̂

) = 0,
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where f 1

(
x j, θ

)
, f2

(
x j, θ

)
, ζi

(
x j, θ

)
, ηi

(
x j, θ

)
and ϕi

(
x j, θ

)
are

f 1

(
x j, θ

)
= α1λ1β1

(
1 + x j

)−(λ1+1)
[
1 −

(
1 + x j

)−λ1
]α1β1−1

, (3.15)

f2

(
x j, θ

)
= α2λ2β2

(
1 + x j

)−(λ2+1)
[
1 −

(
1 + x j

)−λ2
]α2β2−1

, (3.16)

ζi
(
x j, θ

)
= λiβi

(
1 + x j

)−(λi+1)
[
1 −

(
1 + x j

)−λi
]αiβi−1 [

βiαiln
(
1 −

(
1 + x j

)−λi
)
+ 1

]
, (3.17)

ηi

(
x j, θ

)
= αiλi

(
1 + x j

)−(λi+1)
[
1 −

(
1 + x j

)−λi
]αiβi−1 [

βiαiln
(
1 −

(
1 + x j

)−λi
)
+ 1

]
, (3.18)

and

ϕi

(
x j, θ

)
=

{
αiλiβi (αiβi − 1)

(
1 + x j

)−2λi−1
[
1 −

(
1 + x j

)−λi
]αiβi−2

ln
(
1 + x j

) }
+

{
αiβi

(
1 + x j

)−λi
[
1 −

(
1 + x j

)−λi
]αiβi−1 [

1 − λiln
(
1 + x j

)]}
. (3.19)

Solving the nonlinear likelihood equations in (3.14) numerically one can obtain the ML estimates of
the unknown parameters.

The ML estimators of the rf and hrf can be obtained by replacing the parameters
(p, α1, α2, β1, β2, λ1and λ2) in (3.3) and (3.4) by their corresponding ML estimators. Hence, the
ML estimators of S M (x) and hM (x) are, respectively, given by

Ŝ M (x) = 1 − p̂
[
1 − (1 + x)−λ̂1

]α̂1β̂1
− (1 − p̂)

[
1 − (1 + x)−λ̂2

]α̂2β̂2
, (3.20)

and

ĥM (x) =
p̂α̂1β̂1λ̂1 (1 + x)

−(λ̂1+1)[1 − (1 + x)−λ̂1
]α̂1β̂1−1

+ α̂2β̂2λ̂2 (1 − p̂) (1 + x)−(λ̂2+1)[1 − (1 + x)−λ̂2
]α̂2β̂2−1

1 − p̂
[
1 − (1 + x)−λ̂1

]α̂1β̂1
− (1 − p̂)

[
1 − (1 + x)−λ̂2

]α̂2β̂2
.

(3.21)

4. Simulation Study

In this section, a simulation study is performed to investigate the efficiency of the ML estimates.
A random variable X from MEIK (pi, αi, λi, βi) distribution is generated using Mathematica 11, for
different samples of size (n=30, 50, 100, 150 and 200) using number of replications (NR)=1000. The
averages, estimated risks (ERs), Biases of the ML estimates of the parameters, rf and hrf are computed
for each model parameters and for each sample size as follows:

1. Average =
∑NR

i=1 (estimate)
NR ,

2. ERs =
∑NR

i=1 (estimated value−true value)2

NR ,

3. (Bias)2 = (estimated value − true value)2.
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Table 1, 2, 3 and 4 display the ML averages, ERs, Biases of the ML estimates and 95% confidence
intervals (CIs) of the unknown parameters pi, αi, λi, βi,rf and hrf for different samples of size (n=30, 50,
100, 150 and 200) where the population parameter values are (α1=2, β1=2.5, λ1=1.4, p=0.6, α2=0.8,
β2=1.6, λ2=1.9) and (α1=1.5, β1=3, λ1=2, p=0.8, α2=1, β2=3, λ2=1.5).

From Tables 1, 2, 3, and 4, one can observe that when the sample size n increases, the ERs and biases
of the ML estimates for the parameters pi, αi, λi, βi, rf and hrf decrease in almost cases. Moreover, the
lengths of the CI become narrower as the sample size increases.

Table 1. ML averages, estimated risks, biases and 95% confidence intervals of the param-
eters, rf and hrf from MEIK distribution for different sample sizes n and (α1=2, β1=2.5,
λ1=1.4, p=0.6, α2=0.8, β2=1.6, λ2=1.9 and NR=1000)

n Parameters Averages ER Bias UI LI Length

30

α1 2.0459 0.1982 0.0021 2.9138 1.1781 1.7357
β1 2.5574 0.3096 0.0033 3.6422 1.4726 2.1696
λ1 1.4196 0.0783 0.0004 1.9667 0.8725 1.0941
p 0.5992 0.0103 0.0000 0.7982 0.4001 0.3981
α2 0.8298 0.0187 0.0009 1.0917 0.5680 0.5237
β2 1.6597 0.0749 0.0036 2.1833 1.1360 1.0473
λ2 1.9084 0.2991 0.0001 2.9802 0.8366 2.1436
R 0.5329 0.0094 0.0002 0.7205 0.3454 0.3751
H 0.5280 0.2273 0.0029 1.4565 0.0000 1.4565

50

α1 2.0398 0.1666 0.0016 2.8359 1.2436 1.5923
β1 2.5497 0.2603 0.0025 3.5449 1.5545 1.9904
λ1 1.4114 0.0612 0.0001 1.8956 0.9272 0.9684
p 0.5928 0.0079 0.0001 0.7673 0.4183 0.3490
α2 0.8226 0.0131 0.0005 1.0429 0.6022 0.4407
β2 1.6451 0.0526 0.0020 2.0858 1.2044 0.8814
λ2 1.8815 0.2464 0.0003 2.8538 0.9092 1.9446
R 0.5419 0.0070 0.0000 0.7057 0.3782 0.3275
H 0.5041 0.1488 0.0009 1.2580 0.0000 1.2580

5. Applications

In this subsection, two real data sets are applied to illustrate the flexibility and applicability of
the MEIK distribution in real life. To check the validity of the fitted model, Kolmogorov- Smirnov
goodness of fit test is performed for the data sets where the p value indicates that the model fits the
data well. Therefore, a comparison is provided between the proposed distribution and other fitted
distributions such as mixture of two components inverted Kumaraswamy (MIK) presented by Noor
et al. [31], generalized inverted Kumaraswamy (GIK) by Iqbal et al. [21] and Topp-Leone-inverted
Kumaraswamy (TL-IK) by Behairy et al. [10]. The ML estimates of the unknown parameters, rf
and hrf, the values of log likelihood (LL), Akaike information criterion (AIC), Bayesian information
criterion (BIC) and corrected Akaike information criterion (CAIC) for MEIK, MIK, GIK and TL-IK
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Table 2. Continued Table 1

n Parameters Averages ER Bias UI LI Length

100

α1 2.0388 0.1056 0.0015 2.6710 1.4064 1.2646
β1 2.5484 0.1649 0.0023 3.3388 1.7580 1.5808
λ1 1.4108 0.0322 0.0001 1.7618 1.0597 0.7021
p 0.5917 0.0058 0.0001 0.7398 0.4436 0.2962
α2 0.8118 0.0072 0.0001 0.9762 0.6475 0.3287
β2 1.6237 0.0287 0.0006 1.9523 1.2950 0.6573
λ2 1.8723 0.1484 0.0008 2.6255 1.1191 1.5064
R 0.5468 0.0035 0.0000 0.6631 0.4303 0.2328
H 0.4874 0.0098 0.0002 0.6793 0.2956 0.3837

150

α1 2.0294 0.0847 0.0009 2.5970 1.4617 1.1353
β1 2.5368 0.1324 0.0014 3.2463 1.8272 1.4191
λ1 1.4065 0.0198 0.0000 1.6817 1.1313 0.5504
p 0.5949 0.0054 0.0000 0.7386 0.4514 0.2872
α2 0.8086 0.0052 0.0001 0.9494 0.6678 0.2816
β2 1.6172 0.0209 0.0003 1.8988 1.3357 0.5631
λ2 1.8806 0.1151 0.0004 2.5443 1.2168 1.3275
R 0.5481 0.0021 0.0000 0.6387 0.4573 0.1814
H 0.4831 0.0053 0.0001 0.6252 0.3409 0.2843

200

α1 2.0451 0.0674 0.0020 2.5461 1.5441 1.0020
β1 2.5564 0.1053 0.0030 3.1826 1.9301 1.2525
λ1 1.4179 0.0162 0.0003 1.6651 1.1706 0.4945
p 0.5945 0.0040 0.0000 0.7186 0.4703 0.2483
α2 0.8071 0.0043 0.0001 0.9343 0.6797 0.2546
β2 1.6141 0.0171 0.0002 1.8687 1.3594 0.5093
λ2 1.8713 0.1094 0.0008 2.5171 1.2253 1.2918
R 0.5467 0.0019 0.0000 0.6340 0.4593 0.1747
H 0.4790 0.0039 0.0000 0.6017 0.3563 0.2454

distributions are given in Table 4.
AIC = 2m − 2L, BIC = mln (n) − 2LandCAIC = AIC + 2

(
m(m+1)
n−m−1

)
, where L is the natural

logarithm of the value of the likelihood function evaluated at the ML estimates,n is the number of the
observations and m is the number of the estimated parameters. The best distribution corresponds to the
lowest values of AIC, BIC and CAIC.

Data set I: The first real data set was provided by Iqbal et. al [21] which are the prices of wooden
toys for 30 children in April 1991 at Suffolk craft shop. The data are:

4.2, 1.12, 1.39, 2, 3.99, 2.15, 1.74, 5.81, 1.7, 0.5, 0.99, 11.5, 5.12, 0.9, 1.99, 6.24, 2.6, 3, 12.2, 7.36,
4.75, 11.59, 8.69, 9.8, 1.85, 1.99, 1.35,10, 0.65, 1.45.

Table 5 presents the ML estimates of the parameters and standard errors (SEs).
Figures 4, 5, 6, 7, and 8 display the PP-plot, QQ-plot, empirical scaled TTT-transform plot, Boxplot

and empirical histogram of the MEIK distribution for the first real data set.
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The plot of the empirical scaled TTT-transform indicates that the first real data has a bathtub hazard
function, boxplot and the histogram of the data. One can notice that this data is right-skewed. P-P plot,
Q-Q plot and the fitted MEIK distribution plots indicate that MEIK distribution provides a better fit to
this data.
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Figure 4. PP-plot of the MEIK distribution for the real data set
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Figure 5. QQ-plot of the MEIK distribution for the real data set

Data set II: The second real data set represents the time between failures for a repairable item. It
was presented by Murthy et al. [28]. The data are: 1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59,
0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24,
1.97, 1.86 and 1.17.

Figures 9, 10, 11, 12, and 13 show the PP-plot, QQ-plot, empirical scaled TTT-transform plot,
Boxplot and empirical histogram of the MEIK distribution for the second real data set.

The plot of the empirical scaled TTT-transform implies that this data has an increasing hazard
function, the boxplot implies that this data is right skewed. The P-P plot, Q-Q plot and the fitted MEIK
distribution plots indicate that MEIK distribution gives better fit for this data.

Table 5 presents the ML estimates of the parameters and standard errors (SEs). Table 6 shows that
MEIK distribution is the best among the compared distributions because it has the smallest value of
LL, AIC, BIC and CAIC for the two real data sets.

6. Concluding Remarks

In this paper, the ME family is introduced as a new family of continuous distributions. Some im-
portant properties are studied and the ML estimation of this proposed mixture family is obtained. The
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Figure 6. The empirical scaled TTT- transform plot for the real data set

MEIK distribution is proposed as a sub-model from the mixture of two components exponentiated fam-
ily. Some characteristics and the ML estimators for the unknown parameters of the MEIK distribution
are derived. A simulation study is conducted to assess the performance of the ML estimators of the
parameters of the MEIK distribution. Finally, two real data sets are applied. The results indicate that
the values of some information criteria are the lowest for the MEIK as compared to MIK, GIK and
TL-IK distributions, therefore, this proposed distribution is superior to other distributions.
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Figure 7. Boxplot for the real data set

5 10 15 20 25 30

0.02

0.04

0.06

0.08

Figure 8. Empirical histogram plot for the real data set
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Table 3. ML averages, estimated risks, biases and 95% confidence intervals of the parame-
ters, rf and hrf from MEIK distribution for different sample sizes n and (α1=1.5, β1=3, λ1=2,
p=0.8, α2=1, β2=3, λ2=1.5 and NR=1000)

n Parameters Averages ER Bias UI LI Length

30

α1 1.51390 0.05380 0.00020 1.96770 1.06030 0.90740
β1 3.02790 0.21510 0.00080 3.93540 2.12060 1.81480
λ1 2.00130 0.11490 0.00000 2.66580 1.33680 1.32900
p 0.78280 0.00600 0.00030 0.93110 0.63460 0.29650
α2 1.10260 0.05240 0.01050 1.50380 0.70150 0.80230
β2 3.30790 0.47180 0.09480 4.51140 2.10450 2.40690
λ2 1.67890 0.18940 0.03200 2.45660 0.90130 1.55530
R 0.55030 0.01370 0.00020 0.77830 0.32220 0.45610
H 0.82520 0.40580 0.00940 2.05930 0.00000 2.05930

50

α1 1.49550 0.03490 0.00000 1.86170 1.12940 0.73230
β1 2.99110 0.13970 0.00000 3.72340 2.25880 1.46460
λ1 1.97420 0.07820 0.00070 2.51980 1.42860 1.09120
p 0.78690 0.00500 0.00020 0.92310 0.65060 0.27250
α2 k1.08120 0.03670 0.00660 1.42120 0.74130 0.67990
β2 3.24370 0.33010 0.05940 4.26360 2.22390 2.03970
λ2 1.65010 0.14660 0.02250 2.34040 0.95980 1.38060
R 0.56050 0.00830 0.00000 0.73880 0.38220 0.35660
H 0.75990 0.06500 0.00100 1.25590 0.26380 0.99210

100

α1 1.48420 0.01640 0.00030 1.73320 1.23510 0.49810
β1 2.96830 0.06560 0.00100 3.46640 2.47010 0.99630
λ1 1.96940 0.03450 0.00090 2.32880 1.61010 0.71870
p 0.78780 0.00480 0.00010 0.92160 0.65390 0.26770
α2 1.06960 0.02100 0.00480 1.31900 0.82010 0.49890
β2 3.20860 0.18930 0.04350 3.95700 2.46030 1.49670
λ2 1.63550 0.08310 0.01840 2.13440 1.13670 0.99770
R 0.56640 0.00330 0.00000 0.67900 0.45370 0.22530
H 0.73270 0.01830 0.00000 0.99760 0.46790 0.52970

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 9. PP-plot of the MEIK distribution for the real data set
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Table 4. Continued Table 3

n Parameters Averages ER Bias UI LI Length

150

α1 1.4838 0.0146 0.0003 1.7182 1.2493 0.4689
β1 2.9676 0.0583 0.0011 3.4365 2.4986 0.9379
λ1 1.9743 0.0302 0.0007 2.3112 1.6374 0.6738
p 0.7875 0.0044 0.0002 0.9147 0.6602 0.2545
α2 1.0714 0.0218 0.0051 1.3249 0.8178 0.5071
β2 3.2142 0.1965 0.0459 3.9748 2.4536 1.5212
λ2 1.6356 0.0886 0.0184 2.1551 1.1161 1.0390
R 0.5646 0.0028 0.0000 0.6692 0.4601 0.2091
H 0.7365 0.0155 0.0000 0.9803 0.4927 0.4876

200

α1 1.4836 0.0117 0.0003 1.6929 1.2742 0.4187
β1 2.9671 0.0467 0.0011 3.3859 2.5484 0.8375
λ1 1.9723 0.0238 0.0008 2.2698 1.6748 0.5950
p 0.7863 0.0047 0.0002 0.9178 0.6549 0.2629
α2 1.0638 0.0145 0.0041 1.2643 0.8632 0.4011
β2 3.1914 0.1308 0.0366 3.7930 2.5897 1.2033
λ2 1.6249 0.0642 0.0156 2.0560 1.1926 0.8644
R 0.5674 0.0020 0.0000 0.6551 0.4796 0.1755
H 0.7279 0.0092 0.0000 0.9162 0.5396 0.3766

Table 5. ML estimates of the parameters, rf and hrf of MEIK distribution for the two real
data sets

Application Parameters Estimates SE Application Parameters Estimates SE

Application I

α1 2.3375 0.1138

Application II

α1 1.4596 0.292
β1 2.9218 0.1779 β1 1.8245 0.4563
λ1 1.7158 0.0997 λ1 1.0816 0.1014
p 0.9142 0.0987 p 0.4968 0.0106
α2 0.9089 0.0118 α2 0.9436 0.0206
β2 1.8179 0.0475 β2 1.8873 0.0825
λ2 1.3541 0.298 λ2 1.9445 0.0019
R 0.4062 0.0199 R 0.5867 0.0015
H 0.4594 0.0002 H 0.5945 0.0145
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Table 6. ML estimates and information criteria for the two real data sets

Application Parameters MEIK MIK GIK TL-IK

Application I

α1 2.3375 1.3512 2.4496 0.4526
β1 2.9218 5.302 7.9995 2.3388
λ1 1.7157 5.3774 1.2116
p 0.9143 0.3378
α2 0.9089 0.3595
β2 1.8179 0.9986
λ2 1.3541
R 0.4063 0.8597 0.9974 0.9632
H 0.4594 0.1778 0.0875 0.0488

Information criteria
LL 145.466 165.405 1117.17 246.613

AIC 159.466 175.405 1123.17 252.613
BIC 169.274 182.411 1127.37 256.817

CAIC 164.557 177.905 1124.09 253.536
Application Parameters MEIK MIK GIK TL-IK

Application II

α1 1.4596 1.1196 0.6829 0.4
β1 1.8245 2.7936 0.9181 2.0408
λ1 1.0816 2.1222 1.0599
p 0.4968 0.2342
α2 0.9436 1.3713
β2 1.8873 0.9907
λ2 1.9445
R 0.5867 0.5434 0.6877 0.9306
H 0.5945 0.5824 0.3499 0.0854

Information criteria
LL 94.424 100.371 149.133 174.31

AIC 108.424 110.371 155.133 180.31
BIC 118.232 117.377 159.337 184.513

CAIC 113.515 112.871 156.056 181.233
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Figure 10. QQ-plot of the MEIK distribution for the real data set
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Figure 11. The empirical scaled TTT- transform plot for the real data set
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Figure 12. Boxplot for the real data set
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Figure 13. Empirical histogram plot for the real data set
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