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Abstract: The challenge of distinguishing genetic mutations that contribute to tumor growth is cru-
cial in cancer treatment. Cancer is responsible for millions of deaths annually, hence the need for early
detection of tumors to improve treatment efficacy and survival rates. However, manual classification
is prone to errors and inefficiencies due to human limitations and the complexity of domain knowl-
edge, leading to time-intensive processes. In response, machine learning models improve accuracy
and efficiency for cancer prognosis and prediction. However, the lack of theoretical understanding of
algorithms may limit the interpretability and applicability of results, where insights into model predic-
tion are crucial to making informed decisions, especially in the biomedical domain. To address these
challenges, our study employed four supervised machine learning algorithms, namely Support Vector
Machine (SVM), Naı̈ve Bayes (NB), Logistic Regression (LR), and Random Forest (RF). The perfor-
mance of these algorithms was assessed using log-loss and misclassification rates. Logistic regression
emerged as the optimal classifier with a log loss of 1.0125 and a misclassification rate of 30.97%.
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1. Introduction

Advancements in genomics and bioinformatics have revolutionized our understanding of genetic
mutations and their potential implications for human health and disease. Gene mutations are funda-
mental genetic changes that can alter the structure and function of genes and play a vital role in various
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biological processes, including diseases such as cancer, drug response, and evolutionary adaptations.
Cancer is responsible for most fatalities in the developed world and ranks second in the developing
world, causing a loss of nearly 8 million lives annually [24].
According to [31], cancer is the uncontrolled growth and spread of abnormal cells in the body, which
can form tumors. Tumors are either cancerous (malignant) or non-cancerous (benign). Malignant
tumors can invade surrounding tissues and spread to other parts of the body, while benign tumors
typically do not spread and can be removed, as shown in Figure 1. Cancer can occur almost anywhere
in the body and is caused by disruptions in the process of cell division, often due to genetic mutations.
These alterations in cell division are illustrated in Figure 2.

Figure 1. Benign vs Malignant Tumor [4]

[7] defines genetic mutations as alterations in the DNA sequence that occur randomly, either due to
environmental factors or inherited from birth, and can be categorised into two main types. The first
type is hereditary or germline mutation, where inherited variants are passed from parent to child and
are present throughout a person’s life in virtually every cell in the body. The second type, known as
somatic mutation is acquired during a person’s lifetime due to factors such as ultraviolet light, X-rays,
cigarette smoke, and copying mistakes during cell division. Somatic mutation cannot be transmitted
to offspring as they occur after conception and in cells other than sperm or eggs (somatic cells). Other
types of genetic mutations are deletion, duplication, insertion, translocation, inversion, and frameshift
among others.

Understanding genetic variations is of paramount importance to unraveling the intricate com-
plexities of biological processes, disease, and drug response [32], thereby facilitating personalized
medicine. Personalized medicine can lead to more comfortable cancer treatment for patients by
utilizing information about the genetic composition of their tumor [14]. This knowledge allows for
a more informed understanding of which treatments are less likely to cause adverse side effects [65].
Gene expression data generally comprise a huge number of genes, yet not all of them are associated
with cancer. Therefore, the need to classify cancer tumors accurately becomes crucial in cancer
treatment. Researchers have carefully examined the difficulties in classifying cancer by making use of
data mining techniques, statistical procedures, and machine learning algorithms to effectively analyse
the information [16].
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Figure 2. Normal vs. Mutated Gene [57]

[46] and [61] affirmed the intensification of using machine learning algorithms for molecular
classification of tumors in recent years since these algorithms can analyze large amounts of genetic
data to identify patterns and characteristics associated with cancer. Using these informations, the
algorithms can classify tumors as benign or malignant and subsequently identify specific subtypes of
cancer, such as breast cancer, lung cancer, etc.

The advent of machine learning models in this domain has presented novel opportunities for accu-
rate and efficient classification of gene mutations [18, 6, 34, 41], paving the way for transformative
breakthroughs in personalized medicine and genetic research.
A branch of artificial intelligence (AI) called machine learning (ML) enables algorithms to learn
from previous datasets (training data) by utilizing statistical, probabilistic, and optimization tools to
automatically improve its performance, classify new data points, and detect new patterns or trends [8].
Although machine learning relies heavily on statistics and probability, it is fundamentally more
powerful, as it allows inferences or decisions that may not be feasible using traditional statistical
approaches [44, 27].
According to [42], the choice of algorithm depends on multiple factors, such as the type of problem
to be solved, the number of variables involved, and the model that would be the most suitable among
others. Hence, there is no universal algorithm that fits all circumstances. Machine learning algorithms
are classified primarily based on the intended outcome they aim to achieve according to [27] and [43].
There are two general types of machine learning algorithms; unsupervised and supervised learning. In
unsupervised learning, no labelled set of training data is provided, and the output during the learning
process is unknown as the algorithm attempts to identify patterns or relationships in the data without
any specific guidance or supervision. Supervised learning involves using a labelled set of training
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data to create or approximate a function that can map an input data to the desired output [34]. It has
been observed that almost all machine learning algorithms used in cancer prediction and prognosis are
based on supervised machine learning.

In the domain of text classification, machine learning models emerge as the optimal replacement
for conventional approaches [51]. Several significant techniques employed in this field include Nave
Bayes, Support Vector Machines (SVM), Decision Trees, J48, K-Nearest Neighbours (KNN), and
IBK [20]. According to [56], there has been a surge in interest regarding the automated categorisation
(or classification) of texts into predefined categories over the past decade, as this growing enthusiasm
can be attributed to the proliferation of digital documents and the subsequent demand for effective
organisational solutions.
Natural language processing (NLP) technology enables computers to interact with humans through
deep learning and linguistic analysis techniques, extracting knowledge from unstructured text [19].
Furthermore, with the progression of technological innovations, text classification and document
categorisation have found widespread application in various domains, covering fields such as medicine
[35, 3], social sciences [49, 48, 47], healthcare [38, 50], business, and marketing [69], and law [62].

According to [35], medical coding involves the assignment of medical diagnoses to distinct
class values extracted from an extensive array of categories, and text classification techniques hold
substantial promise and value in performing such tasks. As online information continues to expand
rapidly, especially in text form, the practice of text classification has emerged as a crucial method to
efficiently organize text data [30].
However, manual classification is prone to numerous inaccuracies due to human errors and a lack of
understanding of domain knowledge, as indicated by [51] and also very time-consuming [26]. The use
of computer-related technology in medical diagnostics has improved physicians’ ability to effectively
diagnose diseases and analyse patient physiological data using innovative signal processing techniques
[71, 72].

The remainder of the article is structured as follows. Section 2 presents the review of relevant
literature. Section 3 describes the data and methods used. The description and pre-processing of the
data are performed in Section 4. The development of model and evaluation are presented in Section 5
followed by the discussion of the results in Section 6. Finally, the conclusion and recommendations of
the study are captured in Section 7.

2. Related Literature

Several studies have explored the use of various natural processing techniques and machine
learning algorithms such as the study by [18]. The researchers explored the application of machine
learning in cancer diagnosis, detection, prognosis, and prediction. Their study highlighted the growing
trend of personalized predictive medicine in cancer care and covered a wide range of machine learning
methods, types of data, and the performance of these methods in cancer prediction and prognosis.
The study further stated that, while some studies lack appropriate validation or testing, others
were well-designed and validated. [18] demonstrated machine learning methods can significantly
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improve precision (15- 25%) in predicting cancer susceptibility, recurrence, and mortality. And also
emphasized the potential of machine learning in advancing cancer research and clinical practice,
opening avenues for improved diagnosis, treatment, and patient outcomes.

Furthermore, the study by [68] addressed the need to distinguish between triple-negative breast
cancer (TNBC) and non-triple negative breast cancer, as TNBC is the most aggressive and lethal form
of breast cancer. The researchers proposed the use of a machine learning (ML) approach to classify
breast cancer patients, based on gene expression data. To develop and validate the classification
models, [68] analyzed RNA-Sequence data from 110 TNBC and 992 non-TNBC tumor samples from
The Cancer Genome Atlas. They selected specific genes as features for training the ML models and
evaluated four different algorithms: Support Vector Machines, K-nearest neighbour, Naı̈ve Bayes,
and Decision tree. Among the four ML algorithms tested, the Support Vector Machine (SVM)
algorithm outperformed the others in accurately classifying breast cancer into TNBC and non-TNBC
categories, with fewer misclassification errors. The results indicate that ML algorithms, particularly
SVM, are efficient and effective in classifying breast cancer patients based on gene expression data,
distinguishing between TNBC and non-TNBC subtypes. The researchers’ approach showed machine
learning models can positively contribute to precision medicine in the clinical management of breast
cancer, helping to tailor treatment strategies based on molecular types and subtypes of the disease.

Subsequently, [54] discussed the significant progress made in the detection and treatment of
cancer using machine assistance over the past few decades. Their study presented a systematic
review of various techniques used in the diagnosis and cure of several types of cancer that affect the
human body and focused on six types of cancer, namely lung cancer, breast cancer, brain tumor,
liver cancer, leukemia, and skin cancer. The researchers categorized the methodologies used in each
case and highlighted existing limitations. The four primary stages of automated cancer diagnosis
discussed were image pre-processing, tumor segmentation, feature extraction, and classification using
benchmark datasets.
The study provided valuable insights to new researchers entering the field of cancer detection and
diagnosis, by offering a comprehensive review of current state-of-the-art machine-assisted techniques
along with their advantages and disadvantages. However, [54] also acknowledged despite the progress
made, the accuracy of cancer detection methods for each cancer category is still not at its peak.
Many researchers have not used benchmark datasets or used small datasets to test their techniques
and emphasized the importance of using benchmark datasets. Finally, their study sheds light on the
need for continued research and development in the field to improve cancer diagnosis and treatment
outcomes.

In addition, [50] integrated natural language processing (NLP) techniques into the development of
conversational health diagnosis systems to enhance patient’s access to medical information through
text. Their study presented creating a chatbot service, named CUDoctor, within the Covenant
University Doctor telehealth system. The chatbot utilised fuzzy logic rules and fuzzy inference
to assess the symptoms of tropical diseases in Nigeria. Leveraging the Telegram Bot Application
Programming Interface (API) and Twilio API, the chatbot established connectivity with users via both
messaging interfaces and short messaging service (SMS).
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The system’s knowledge base draws from established medical ontologies, encompassing disease-
symptom associations. Fuzzy support vector machine (SVM) techniques were used to predict diseases
based on symptoms entered by the user. Natural language processing interprets user input, channelling
it to CUDoctor for decision support. The researchers’ diagnostic process ended with the transmission
of a notification message to the user.
The resulting system embodied a personalised medical diagnosis approach, using user input data
to effectively identify the disease. Usability assessment, measured using the system usability scale
(SUS), demonstrated a favorable mean score of 80.4, underscoring the system’s positive evaluation
and usability. The study by [50] underscored the potential of NLP-powered chatbot systems to
facilitate medical diagnoses and foster improved patient interactions with healthcare resources.

Further, [25] also addressed the challenging task of manually distinguishing genetic mutations
in cancer tumors that act as drivers for tumor growth from genetic mutations known as passengers
which is time-consuming and involves pathologists interpreting clinical evidence related to genetic
mutations, belonging to nine different classes.
To automate this classification process, the researchers proposed a multiclass classifier that uses Nat-
ural Language Processing (NLP) techniques to classify genetic mutations based on clinical evidence,
which is in the form of text descriptions. Three text transformation models, namely Count Vectorizer,
Tfidf Vectorizer, and Word2Vec, were employed to convert the text descriptions into a matrix of
token counts and used three machine learning classification models (Logistic Regression, Random
Forest, and XGBoost) along with a Recurrent Neural Network (RNN) model from deep learning. The
researchers evaluated the accuracy scores of all proposed classifiers using the accuracy score from the
confusion matrix. [25] results showed that, the RNN model of deep learning outperforms the other
proposed classifiers, achieving the highest accuracy of 70% in classifying genetic mutations based on
clinical evidence.
Their research highlighted the potential of using NLP techniques and machine learning classifiers,
particularly the RNN model, to automate and improve the accuracy of genetic mutation classification
in cancer tumors based on clinical evidence.

Several studies such as [37, 25, 2] have explored gene mutation classification using machine
learning and deep learning to improve classification accuracy but these studies lack a thorough insight
into how the model performs. Recognising the importance of model interpretability in biomedical
applications, this study aims to bridge the gap between high performance and transparency in gene
mutation classification through the clinical literature using machine learning models. By creating
a multiclass classifier with enhanced interpretability, the study aims to provide pathologists with
insights into the reasons behind the model predictions. This transparency not only aids in efficient
gene mutation classification but also minimises misdiagnosis rates, potentially saving patients’ lives
and reducing adverse consequences.

To achieve these goals, the study adopts a hybrid approach, integrating categorical and text transfor-
mation techniques. These methods, combined with four well-established machine learning classifiers:
Logistic regression, Naive Bayes, Support Vector Machines (SVM), and Random Forest aim to create
a model that not only exhibits high efficiency but also ensures the pathologist’s ability to comprehend

Computational Journal of Mathematical and Statistical Sciences Volume 3, Issue 2, 280–315



286

and trust its decisions. Through this comprehensive approach, the study aspires to contribute to the
field by offering a multiclass classification solution that bridges the gap between performance and
interpretability in genetic mutation classification.

3. Methods Used

The model training was done in five stages: (a) data cleaning and exploratory; (b) feature
transformation or extraction; (c) train-text split (d) classifier training; and finally (e) evaluation of the
trained classifier to select the best classifier. Below are the proposed algorithm steps followed by the
framework for the study illustrated in Figure 3

Proposed Algorithm Steps

• Data Collection: Obtain cancer patients dataset from Kaggle.
• Data Preprocessing: Preprocess the data by removing punctuation and special characters, elimi-

nating stopwords, and converting all text to lowercase.
• Data Splitting: Divide the dataset into train, cross-validation, and test sets in the ratios 48:12:40,

56:14:30, and 60:20:20 such the ratio with the best performance is selected.
• Exploratory Data Analysis: Explore train, cross-validation and test dataset under each ratio to

know the number of observations in that dataset and how the features are distributed.
• Feature Extraction: Gene, Variation, and Text features were extracted and transformed into nu-

merical values such that they can be used for model training.
• Classifier Training: Train selected clasifiers namely Naive Bayes, Logistic Regression, Support

Vector Machine and Random Forest with the train data. Then cross-validate with cross-validation
data in hyperparameter tuning to choose the best parameter value.
• Classifier Evaluation: Evaluate the trained classifier with the test data using evaluation metrics

like log loss and misclassification rate to select the best classifier.

3.1. Data Cleaning and Exploratory

In various algorithms, particularly those involving statistics and probabilities, the presence of noise
and unnecessary features can detrimentally impact the performance of the system [35]. Therefore, the
following data-cleaning techniques were employed to preprocess and prepare text data for analysis.
Tokenization which is a fundamental step in text pre-processing, was used to convert the continuous
stream of text into manageable units. Also, all the text were converted to lowercase which helps in
standardising the data and ensures that the model does not treat the same word with different cases as
distinct.
Stop words are common words such as; (the, is, and, after) that occur frequently in text but usually do
not contribute much to the meaning. All stop words were removed as mentioned in the work of [53] to
reduce noise in the data and improve processing speed. In addition, punctuation and special characters
were all removed
Subsequently, exploratory data analysis (EDA) was performed to visually and statistically explore
the data set to gain insight, discover patterns, and understand the underlying structure of the data.
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Figure 3. Framework for The Study

Therefore, stratified sampling was used in data splitting since the distribution of the outcome variable
(class) was unbalanced.
The study used 60: 40, 70: 30, and 80: 20 train/test ratios, where a larger portion of the data set
(training data) was used to train the classifier. We used holdout cross-validation where the validation
set was used for initial model assessment and hyperparameter tuning, while the test set was used to
get a final evaluation of the model’s performance after all tuning was performed. The separation of
data into training, validation, and test sets was done to prevent overfitting which occurs when a model
learns to perform exceptionally well on the training data but does not generalize well to unseen data.
Univariate feature analysis was used to examine each feature separately to determine how significant
they are in predicting class labels as indicated in the work of [55].

3.2. Feature Transformation or Feature Extraction

The categorical features (Gene and variation) were transformed using one-hot encoding or response
coding while text features were transformed using TFIDF or Bag of words. Feature transformation
was performed to transform categorical and text features into numerical vector formats that can be
used by machine learning algorithms.

One-hot encoding involves generating new variables that represent the original categories using
binary values of 0 or 1 [12].

Computational Journal of Mathematical and Statistical Sciences Volume 3, Issue 2, 280–315



288

Response coding is defined as a technique for converting categorical data that involves calculating
the probability of a data point belonging to a specific class given a category [58]. This is expressed
mathematically as ;

P(class = Y |category = A) =
P(category = A ∩ class = Y)

P(category = A)
(3.1)

where;
Y = class label
A = category of gene or variation

Count Vectorizer serves as a prevalent text preprocessing method in natural language processing
(NLP) applications. It is employed to transform a set of textual documents into a numerical represen-
tation. It involves tallying the occurrences of each word within a document [60]. Count vectorizer
offers a clear method for tokenizing a set of text documents, creating a vocabulary of known words,
and encoding new documents using that vocabulary[5, 17, 23].

Term Frequency Inverse Document Frequency (TF-IDF)
TF-IDF is a measure used to assess the significance of a word in a document within a given collection
or corpus[13]. It employs a metric that gauges the frequency of words within the documents, and the
word count is adjusted based on this metric [37]. Term Frequency (TF) is a metric that indicates the
frequency with which a term appears within a document. Since documents can vary in length, a term
can occur more frequently in longer documents than in shorter ones. This is expressed mathematically
as;

T F =
Number o f times the term appears in a document

Total number o f terms in the document
(3.2)

Inverse Document Frequency (IDF) is a measure of the significance of a term. When calculating
TF, all terms are given equal importance. However, it is recognized that certain terms, such as ”the”,
”of”, and ”is”, may appear frequently but have little value in terms of meaning. As a result, it is
necessary to decrease the weight of the frequent terms while increasing the weight of the rare ones.
This is achieved through the following computation:

IDF =
Number o f the document in the corpus

Number o f document in the corpus contain the term
(3.3)

The mathematical representation of the weight of a term in a document By utilizing this approach, we
can impose a penalty on words that have high frequency. This is achieved by multiplying two metrics:
the count of a word in a document and the inverse document frequency of the word across a set of
documents [70, 59] as expressed in Equation (3.4).

W(d, t) = T F(d, t) ∗ log
(

N
d f (t)

)
(3.4)

The number of documents, N, is represented by df (t), which is the count of documents containing
the term t within the corpus. The first part of Equation (3.4) increases recall, while the second part
increases the precision of the word embedding [59].
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3.3. Supervised Learning Algorithm

The study used supervised learning, a type of machine learning algorithm since the data set is
labelled, and also a classification task because the target variable is categorical (classes 1 - 9). Hence,
we are dealing with a multi-class classification problem using the following algorithms .

Logistic Regression
Logistic regression is a supervised machine learning algorithm that performs classification tasks by
predicting the probability of an outcome, event, or observation [1]. Logistic regression can also
analyze the relationship between one or more independent variables and classifies the data into
discrete classes. Based on the number of categories, logistic regression can be classified as binomial,
multinomial, or ordinal.

Let X ∈ Rn×d in a given data set, the multinomial (or multilabeled) logistic classification uses the
probability that x belongs to class i [36] as defined in Equation (3.5).

P(y(i) = 1|x, θ) =
exp

(
θ(i)

T
x
)

∑m
i=1 exp

(
θ(i)

T x
) (3.5)

where;
x = The input feature
θ(i) = the parameter vector corresponding to class i.
P(y(i) = 1|x, θ) = The conditional probability that the target variable y takes the value 1 given the input
features x. This represents the probability of the outcome being class 1.∑m

i=1 exp
(
θ(i)

T
x
)
= The sum of the exponential inner products of the parameter vectors θ with the input

feature x for all classes i.
The denominator term normalizes the probabilities to ensure they sum up to 1.

For binary classification (m = 2) which is known as a basic LR, but for multinomial logistic regres-
sion (m > 2) usually uses the softmax function [35]. The normalization function is written as;

m∑
i=1

p
(
y(i) = 1

∣∣∣x, θ) (3.6)

For classification task in a supervised learning , the component of θ is calculated from the subset of
the training data D which belongs to class i where i ∈ 1, .., n}.

Naive Bayes Classifier
Naı̈ve Bayes classifier approach is rooted in the principles of Bayes theorem, originally developed
by Thomas Bayes during the years 1701–1761 [52, 28]. Numerous types of NB exist, including
multinomial NB, Bernoulli NB, and Gaussian NB. Among these, multinomial NB finds extensive
application in text classification [51].

The output of the Multinomial Naı̈ve Bayes classifier is a predicted class, c, from a set of k cate-
gories, C =

{
c1,c2, ..., ck

}
, when the number of documents (n) is given. The Naı̈ve Bayes algorithm can
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be expressed as:

P (c|d) =
P (c)Πw∈dP (d|c)nwd

P (d)
(3.7)

P (c|d) represents the probability of class c given the document d, while c is the prior probability
of class c, and P(d) is the probability of document d. The number of times a word, w appears in a
document, d is denoted as nwd. The conditional probability of document d given class c, is represented
as P (d|c).

The Laplace-smoothed version of the Multinomial Naı̈ve Bayes algorithm is expressed as P (w|c)
and is given by equation. P (w|c) is calculated as the proportion of times word w appears in documents
of class c [22].

P(w|c) =
1 +

∑
d∈Dc

nwd
k +

∑
w′

∑
d∈Dc

nw′d
(3.8)

where Dc is the collection of all training documents in class c, and k is a smoothing parameter. The
number of times a word, w appears in a document, d is denoted as nwd while

∑
w′

∑
d∈Dc

nw′d represents
the total count of all words in all documents in class c.

k is the size of the vocabulary (i.e. the number of distinct words in all training documents). The
additional one in the numerator is the Laplace correction and corresponds to initializing each word
count to one instead of zero. It requires the addition of k in the denominator to obtain a probability
distribution that sums to one. This kind of correction is necessary because of the zero-frequency
problem, a single word in test document d that does not occur in any training document about a
particular category c will otherwise render P (c|d) zero.

Support Vector Machine (SVM)
[64] developed the initial version of Support Vector Machines in 1963. In the early 1990s, [10] intro-
duced a nonlinear variation of this model. Originally designed for binary classification tasks, SVM has
been widely adopted for tackling multiclass problems through various research efforts [9]. They are
popular due to their ability to handle high-dimensional data and their versatility in handling both linear
and nonlinear data.
Multi-class SVM: Given that SVMs have traditionally been employed for binary classification, an
extension called Multiple-SVM (MSVM) is employed to handle multi-class problems [45]. In the
One-vs-Rest approach, N binary classifiers are trained, each representing one class versus the rest of
the classes. The prediction for a new sample x is made by all binary classifiers, and the class with the
highest confidence (i.e., the highest decision score) is selected as the final prediction.

The decision boundary equation for the One-vs-Rest approach is expressed mathematically as

f (x) = wix + bi (3.9)

Where: x is the input feature vector representing a data point to be classified.
wi This is the weight vector corresponding to the i-th class in the SVM classifier.
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bi is the bias term or intercept corresponding to the i-th class in the SVM classifier.

Points lying on the decision boundary satisfy the equation wix + bi = 0, and their classification
depends on which side of the boundary they fall.

Addressing the i-class issue basically involves developing a decision function encompassing all i-
classes alongside [66, 15]. Generally, a multiclass SVM can be formulated as an optimization problem
with the following structure;

min
w1,w2,....,wk ,

ζ
1
2

∑
k

wT
k wk +C

∑
(xiyi)∈D

ζi (3.10)

st. wT
yi

x − wT
k x ≤ i − ζi, (3.11)

∀(xi, yi) ∈ D, k ∈ 1, 2, ..,K, k , yi

The training data points (xi, yi) are part of a dataset D, and C is a penalty parameter. Additionally, ζ
is a slack parameter introduced to handle misclassifications or instances that fall within the margin.
w1,w2, ....,wk, are the weight vectors associated with each class k. The margin associated with the
correct class yi for the i-th instance is given by wT

yi
x and the margin associated with class k for the i-th

instance is also given by wT
k x.

Random Forest
Random forest is one of the most popular and powerful machine learning algorithms. It is a type
of ensemble machine learning algorithm called Bootstrap Aggregation or Bagging. In 1995, T. Kam
Ho developed a method that utilised t trees in parallel [29]. [11] later enhanced it, demonstrating
convergence for RF as shown in Figure 4 with margin measures mg (X, Y):

mg (X,Y) = avkI (hk (X) = Y) − max avkI (hk (X) = J) , j , i (3.12)

where mg (X,Y) denotes the margin for a given instance X with true label Y , avk represents the
average over all decision trees k in the random forest ensemble and I (hk (X) = Y) is an indicator
function that equals 1 if the prediction of the k-th decision tree hk for the instance X matches the true
label Y , and 0 otherwise. max avkI (hk (X) = J) denotes the maximum average probability of incorrect
predictions for labels J other than the true label Y

Once all trees in the forest have been trained, the predictions are determined through a voting
process, as outlined in the work of [67]. The final classification result is decided by a majority vote by
all DTs and it is expressed in Equation (3.13).

δv argmaxi

∑
j: j, j

I{ri j>r ji} (3.13)

Such that ri j + r ji = 1
Where;
δv is the final classification result.
argmaxi represents the class index that maximises the expression.
i and j are indices representing different classes.
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Figure 4. Random Forest [11]

ri j is a measure of the number of times class i is chosen over class j in the majority votes of the
decision trees.
I{ri j>r ji} is an indicator function that equals 1 if ri j > r ji and 0 otherwise.

3.4. Model Evaluation Metric

An evaluation metric in machine learning is a measure used to evaluate the performance of a ma-
chine learning model.

Logarithmic Loss (Log loss )
Log loss, also called cross-entropy loss, is one of the most reliable single number metrics that uses the
probability score between 0 and 1 in its calculation [40]. In a multi-classification problem, we define
the logarithmic loss function F as:

F = −
1
N

N∑
i

C∑
j

yi j · log
(
pi j

)
(3.14)

Where
N is the number of instances.
C is the number of different labels.
yi j is the binary variable with the expected labels.
pi j is the classification probability output by the classifier for the i-instance and the j-label.

Equation 3.14 calculates the negative logarithm of the predicted probabilities for the true label.
Log loss score ranges from 0 to infinity, when the predicted probability aligns well with the true value
, then log loss will be close to 0, indicating a more accurate prediction. On the other hand, if the
predicted probabilities deviate significantly from the true values, the log loss will be larger, indicating
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poorer model performance [40].

Since the log loss of a perfect model is 0 and not upper bound, a random model can be simulated
using the data to obtain a log loss value such that any better model developed should have a log loss
less than the log loss of the random model[55]. Also, the number of data points that deviated from the
true values after prediction (misclassified points) were computed.

Confusion matrix
A confusion matrix is a tabular representation that provides a comprehensive summary of the
performance of a machine learning model on a specific set of test data. It is mainly used to evaluate
the effectiveness of classification models and is designed to predict categorical labels for individual
input instances. The confusion matrix displays the counts of true and false predictions obtained with
known data [39]. The matrix shows the counts generated by the model when applied to the test data
which are briefly defined below.
True Positives (TP) - Both actual and predicted values are Positive. True Negatives (TN) - Both
actual and predicted values are Negative. False Positives (FP) - The actual value is negative, but was
predicted as positive. False Negatives (FN) - The actual value is positive but was predicted as negative.

These values offer crucial insights into the model’s accuracy and error rates, facilitating a deeper
understanding of its classification capabilities. While accuracy is the typical measure for classification,
it can be misleading if the dataset is skewed [21]. Precision and recall are also extensively employed
to gauge the efficiency of text classifiers [35].

Precision: is the measure of all actual positives out of all predicted positive values. Precision aims
to minimize the number of false positives and does not concern itself with false negatives. The value
of precision ranges between 0 and 1 and is presented by Equation 3.15.

Precision =
T P

T P + FP
(3.15)

Recall: also known as Sensitivity and True Positive Rate is the measure of positive values that are
predicted correctly out of all actual positive values. Unlike precision, Recall aims to minimise the
number of false negatives and does not concern itself with false positives, and also ranges between 0
and 1. Recall is expressed mathematically in Equation (3.16).

Recall =
T P

T P + FN
(3.16)

Precision and recall matrices are extensions of precision and recall, computed in a matrix form to
get a deeper understanding of how well the model developed performs [63].

4. Data Description and Exploratory

The data set was obtained from the Memorial Sloan Kettering Cancer Centre (MSKCC), a renowned
institution in the field of oncology. This data set was made available through Kaggle and its compila-
tion involved contributions from distinguished researchers and oncologists [33]. The total number of
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observations was 3321 which is represented by the first column (ID). The dataset has three features:
”Gene”, ”Variation”, and ”TEXT” (Clinical Literature). With nine distinct labels (Class), making it a
multiclass classification task.
Figures 5 and 6 shows the first and last 10 observations of the data set respectively.

Figure 5. First Ten Observation of Data Set

Figure 6. Last Ten Observation of Data Set

The total number of unique genes and variation were 264 and 2996 respectively with text having
65956 words. The distribution of class labels in ascending order is shown in Table 1.

The imbalanced nature of the class distribution is represented in Figure 7, followed by the frequency
distribution of the top 20 genes and variations in Figure 8 and Figure 9 respectively.

In various algorithms, particularly those that involve statistics and probabilities, the presence of
noise and unnecessary features can negatively impact the performance of the system [35]. Hence, the
text data was cleaned using data-cleaning techniques such as stopword removal, lower casing, and
special character removal among others. Five observations for text feature with ID (1109, 1277, 1407,
1639, and 2755) had null values, and also there was no correlation among the features.
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Table 1. Class Distribution in Dataset

Class Number of data points Percentage
8 19 0.572%
9 37 1.114%
3 89 2.680%
5 242 7.287%
6 275 8.281%
2 452 13.610%
1 568 17.103%
4 686 20.656%
7 953 28.698%

Figure 7. Imbalanced Class Distribution

4.1. Train/Test Split

To train machine learning models that generalises with accurate predictions, the data set was di-
vided into training, cross-validation, and testing. A comparative analysis was done on data splitting to
select the most suitable split for our data using the following ratios 48:12:40, 56:14:30, and 60:20:20.
The number of observations in each ratio were (1593, 399, 1329), (1859, 456, 997) and (1992, 664,
665) respectively. Data splitting was done using stratified random sampling to maitain the distribution
of class label in the data set to address the imbalanced distribution. Hence each split can be a true
representation of the entire data set. Figure 10, presents the distribution of class labels. Furthermore,
the probability density function for gene and variation were plotted in Figure 11 and Figure 12. This
distribution characterises the density or concentration of genes and variation in our data set, and a
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Figure 8. Variation Frequency Distribution for Top 20 Genes

Figure 9. Variation Frequency Distribution for Top 20 Variations

similar distribution is replicated for each split.

4.2. Random Model Simulation

Since log loss is a performance metric that would be used to evaluate the classifiers and is not upper
bound, a random model is simulated to obtain log losses from the test and cross-validation so that any
better model developed must have smaller log losses. The random model log losses for cross-validation
and testing were 2.44 and 2.55 respectively. The output is displayed in Figure 13

Therefore, any good model developed is expected to perform better than the random model with
cross-validation and log losses less than 2.5.
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Train data Cross-validationn data

Test data
Figure 10. Distribution of Class Labels in Each Data Split

4.3. Univariate Feature Analysis

The study explored each feature individually to know how they are distributed and also fitted a
logistic regression model using each feature (gene, variation, and text) separately. Their results gave log
losses less than 2.5 which means all the features are significant in predicting class labels. A summary
of the result is shown in Table 2.

4.4. Feature Extraction

Gene and variation features are categorical variables and were transformed using one-hot encoding
and response coding, the text feature was also transformed using TFIDF and Count vectorizer. The
dimensions of the transformed features are shown in Tables 3,4 and 5 respectively. Each one-hot
encoded feature and response coded feature were stacked horizontally with TFIDF and count vectorizer
which is presented in Table 6

Computational Journal of Mathematical and Statistical Sciences Volume 3, Issue 2, 280–315



298

Total dataset Train data

Cross-validation data Test data

Figure 11. Distribution of Gene in Each Data Split

Table 2. Log Losses for Univariate Analysis

Feature Name Cross Validation Log Loss Test Log Loss
Random model 2.4469 2.5532

Gene 1.2153 1.2481
Varaition 1.6904 1.7418

Text 1.0446 1.1075

5. Model Training and Evaluation

The machine learning algorithms used in developing our multiclass classifiers were Multinomial
Naı̈ve Bayes(MNB), Support Vector Machine(SVM), Logistic Regression(LR) and Random For-
est(RF). These supervised learning models were selected because the data set is labelled with dis-
crete outcome variable (classification problem). Since we are dealing with a classification problem
these models are termed as classifiers. The selected classifiers offer the advantage of providing feature
importance, allowing for a better understanding of the features that contribute significantly to the pre-
dictions.
Each of these classifiers was trained using transformed training data, designed to learn patterns and
relationships in the data. Also, the transformed cross-validation data was used for hyperparameter
tuning to regulate the learning process in which the best parameter values were selected for optimal
model training, while the transformed test data was used to get a final evaluation of the model’s per-
formance after all tuning was done. Additionally, all classifiers were calibrated to obtain probability
output, rather than just class labels to minimize errors. The class probabilities allow pathologists to
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Total dataset Train data

Cross-validation data Test data

Figure 12. Distribution of Variation in Each Data Split

Table 3. Dimension of Response Coded Features

Response Coding of Categorical Features
Split Gene Variation

Train 1895, 9 1895, 9

Cross validation 465, 9 465, 9

Test 997, 9 997, 9

make informed decisions about whether further testing is necessary. Hence, log loss was chosen as an
evaluation metric. Further, to gain insight into the classification process, recall, and precision matrices
were obtained from the confusion matrix to get a deeper understanding of the developed classifiers.
Logistic regression and support vector machine were both tuned with balanced and unbalanced class
distributions from the sklearn library. In summary, 16 classifiers from four machine learning algo-
rithms were trained using four feature transformation techniques. The model development output from
”Random Forest + Response + TFIDF’ and ”Logistic Regression + Response + TFIDF(WCB)” are
displayed below since our optimum decision was based on these two classifiers

5.1. Random Forest + Response Coding + TFIDF Vectorizer

The third column in Table 6, was used to train random forest with 100, 200, 500, 1000, and 2000
estimators with maximum depth of 5 and 10. The minimum log loss was obtained at the n estimate =
2000 with a maximum depth of 10 and the tuning output is shown in Figure 14.
Subsequently, Figure15 shows precision, recall, and confusion matrices thereby giving a deeper un-
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Confusion Matrix
Precision Matrix

Recall Matrix
Figure 13. Random Model for log loss

derstanding of the developed model.

5.2. Logistic Regression + Response Coding + TFIDF (WCB)

Also, a logistic regression model was trained using response coded (gene and variation features)
and TFIDF encoded (text feature). An alpha value of 10−6 to 103 was used in hyperparameter tuning
and the minimum log loss occurred at alpha equals 10−4 which was used to train the model. The tuning
output can be seen in Figure 16 followed by precision recall and confusion matrix in Figure 17.

5.3. Feature Importance

Since the study aims to train classifiers with class probabilities that are easily interpretable, the
importance of the features was assessed. A test point is selected for two correctly classified points in
Figures 18 and 19. The predicted class probability and the features present in query point add more
insight into the model’s prediction.
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Table 4. Dimension of One-hot Encododed Features

Onehot Encoding of Categorical Features
Split Gene Variation
Train 1895, 224 1895, 1724

Cross validation 465, 224 465, 1724
Test 997, 224 997, 1724

Table 5. Dimension of Count and TFIDF Vectorizer

Encoding of TEXT Feature
Split TFIDF vectorizer Count Vectorizer
Train 1895, 49767 1895, 65956

Cross validation 465, 49767 465, 65956
Test 997, 49767 997, 65956

6. Results and Discussion

Among the three data split ratios used, the 56: 14: 30 split gave the minimum log loss and the
output is shown in Table 7 followed by the graphical representation of the results displayed in Figure
20

Table 7. Summary of Log Losses and Percentages Misclassified

Classifier Train Loss CV Loss Test Loss Misclassified %
MNB + Onehot + TFIDF 0.6494 1.1202 1.1976 33.12%

MNB + Response + TFIDF 0.8574 1.1465 1.2363 35.05%
MNB + Onehot + CountVec 0.5806 1.1132 1.2027 32.26%
SVM+ Onehot + TFIDF(CB) 0.5366 1.0479 1.1247 33.12%

SVM + Onehot + TFIDF (WCB) 0.4874 1.0115 1.0799 32.90%
SVM + Response + TFIDF (CB) 0.6697 1.0252 1.1014 31.61%

SVM + Response + TFIDF (WCB) 0.6457 1.0134 1.0747 30.75%
SVM + Onehot + CountVec 0.4971 1.0136 1.0861 33.76%
LR + Onehot + TFIDF (CB) 0.4157 0.9575 1.0238 32.47%

LR + Onehot + TFIDF (WCB) 0.4046 0.9499 1.0183 32.04%
LR + Response + TFIDF (CB) 0.5897 0.9561 1.0196 30.96%

LR + Response + TFIDF (WCB) 0.5935 0.9536 1.0125 30.97%
LR + Onehot + CountVec 0.4193 0.9648 1.0364 31.18%

RF + Onehot + TFIDF 0.6219 1.0416 1.0813 33.54%
RF + Response + TFIDF 0.3859 0.9517 1.0023 29.68%
RF + Onehot + CountVec 0.6128 1.0378 1.0794 32.90%

Green = Classifier with the least log losses and misclassified percent.
Blue = Best classifier
Red =Worst classifier
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Table 6. Dimension of Stacked Features

Split Onehot + TFIDF Response + TFIDF Onehot + Count Vectorizer
Train 1895, 51715 1895, 49785 1895, 67904

Cross validation 465, 51715 465, 49785 465, 67904
Test 997, 51715 997, 49785 997, 67904

Figure 14. Hyperparameter Tuning for Random Forest + Response + TFIDF

The Train Loss represents the error of the model on the training data and indicates how well the
model fits the training data. However, excessively low Train Loss may indicate overfitting, where the
model memorizes the training data but fails to generalize well to unseen data. Although train loss is
essential for understanding how well the model fits the training data, it alone is not sufficient to assess
model performance

CV loss measures the model’s performance on unseen data during cross-validation, which simulates
how the model would perform on new data. It provides an estimate of how well the model generalizes
to new, unseen data. A lower CV loss indicates better generalisation performance, as the model is
better able to predict outcomes on unseen data.

Test loss evaluates the model’s performance on an independent test data set that the model has
not seen during training or cross-validation. Test loss provides a realistic estimate of how well the
model will perform in real-world applications. Similarly to CV loss, a lower test loss indicates better
generalisation and predictive performance.

Misclassified points play a crucial role in evaluating the performance of machine learning models
and selecting the best model for a given task. In domains where accurate predictions are crucial,
such as healthcare, minimising misclassified points is paramount. Decision-makers rely on models
with low misclassification rates to make informed decisions based on the model’s output. Logistic
Regression and Support Vector Machines were developed with CB (class balanced) and WCB (without
class balanced), from Sk-learn.
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Confusion Matrix Precision Matrix

Recall Matrix
Figure 15. Matrices For Random Forest + Response Coding + TFIDF

6.1. Multinomial Naive Bayes (MNB) Classifiers

MNB + Onehot + TFIDF: This model displayed moderate performance with a relatively high
Train Loss of 0.6494. The CV and Test Loss values of 1.1202 and 1.1976 respectively were moderatly
higher, indicating potential overfitting or model complexity. The misclassified percentage 33.12% was
also moderate.

MNB + Response + TFIDF: Response coding with TFIDF encoding showed higher Train, CV, and
test loss values than Onehot encoding, suggesting less optimal performance. The misclassified percent
is relatively higher at 35.05%, indicating limitations in predictive accuracy.

MNB + Onehot + CountVec: This model exhibited moderate Train, CV and Test Loss values of
0.5806, 1.1132, and 1.2027, respectively. However, the misclassified percentage was relatively high
(32.26%), indicating potential limitations in predictive accuracy compared to other variations of the
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Figure 16. Hyperparameter Tuning for Logistic Regression + Response + TFIDF

MNB.

Among all Multinomial Naive Bayes classifiers, MNB + Onehot + CountVec showed relatively
better performance, followed by MNB + Onehot + TFIDF with MNB + Response + TFIDF exhibiting
the worst performance.

6.2. Support Vector Machine (SVM) Classifiers

SVM + Onehot + TFIDF (CB): This model demonstrated moderate performance with a relatively
high Train Loss of 0.5366. The CV and Test Loss values of 1.0479 and 1.1247 respectively, further
increased. The Misclassified percentage was notably high at 33.12%.

SVM + Onehot + TFIDF (WCB): Similar to the CB variation, this model showed moderate
performance across all metrics, with slightly improved Train, CV, and Test Loss values. However, the
Misclassified percentage remained relatively low at 32. 90%.

SVM + Response + TFIDF (CB): This model exhibited competitive performance with a relatively
high Train Loss of 0.6697. However, the CV and Test Loss of 1.0252 and 1.1014, respectively, were
lower compared to the Onehot + TFIDF variations. The misclassified percentage was significantly
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Confusion Matrix
Precision Matrix

Recall Matrix
Figure 17. Matrices For Logistic Regression+Response Coding+TFIDF (WCB)

low at 31. 61%, indicating improved predictive accuracy.

SVM + Response + TFIDF (WCB): Similar to the CB variation, this model demonstrated balanced
performance across Train, CV, and Test Loss values. The Misclassified percent was lower at 30.75%,
indicating improved predictive accuracy compared to other SVM variations.

SVM + Onehot + CountVec: This model exhibits moderate Train, CV, and Test Loss values.
However, the Misclassified % was relatively high at 33.76%, indicating potential limitations in
predictive accuracy compared to other SVM variations.

In summary, SVM + Response + TFIDF (WCB) emerges as the most promising classifier among
SVM variations, demonstrating balanced performance and competitive predictive accuracy. SVM +
Onehot + TFIDF (CB) performed worse among all SVM variation
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Figure 18. Correctly Classified Point

Figure 19. Correctly Classified Point

6.3. Logistic Regression (LR) Classifiers

LR + Onehot + TFIDF (CB): This model exhibits relatively balanced performance with a moderate
Train Loss of 0.4157. However, the CV and Test Loss values increase to 0.9575 and 1.0238,
respectively. The Misclassified ercentage of 32.47% indicates poor model predictive accuracy.

LR + Onehot + TFIDF (WCB): Similar to the CB variation, this model demonstrated balanced
performance across Train, CV, and Test Loss values. While the Train Loss is marginally lower at
0.4046, the Misclassified percent remains relatively high at 32.04%.

LR + Response + TFIDF (CB): This model showed competitive performance with a Train Loss
of 0.5897 and CV and Test Loss values around 0.9561 and 1.0196, respectively. The misclassified
percent is significantly lower at 30. 96%, indicating improved predictive accuracy compared to other
variations of the LR.

Computational Journal of Mathematical and Statistical Sciences Volume 3, Issue 2, 280–315



307

Figure 20. Grouped Bar Graph of Classifiers

LR + Response + TFIDF (WCB): Similar to the CB variation, this model displayed balanced per-
formance across all metrics, with slightly improved Test Loss and Misclassified % values of 1.0125
and 30.97%, respectively.

LR + Onehot + CountVec: This model exhibited moderate Train, CV, and Test Loss values.
However, the Misclassified % is slightly higher at 31.18%, indicating relatively lower predictive
accuracy compared to LR + Response + TFIDF variations.

In summary, LR + Response + TFIDF (CB) and LR + Response + TFIDF (WCB) emerged as
the most promising classifiers among the variations of LR, demonstrating balanced performance and
competitive predictive accuracy. The worst performing model among all LRs was LR + Onehot +
TFIDF (CB).

6.4. Random Forest (RF) Classifiers

RF + Onehot + TFIDF demonstrated competitive training performance with a training log loss of
0.6219. However, in the testing phase, it yields a test log loss of 1.0813 and a percentage misclassified
of 33.54% Similar results for RF + Onehot + CountVec were obtained. RF + Response + TFIDF
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displays the lowest training log loss of 0.3859, the lowest test log loss of 0.9517, with a misclassified
percentage of 29. 68%.

RF + Response + TFIDF stands out as the most promising classifier among all RF and the classifier
that performed worse was RF + Onehot + TFIDF.

It was noted that, within each category of the four primary classifiers, the most effective subtype
of classifiers were trained using response-coded gene and variation, along with TFIDF-encoded text
except MNB where the best classifier was trained with one-hot encoding and count vectorizer.
Subsequently, both logistic regression and support vector machine classifiers that were developed
with a balanced class distribution performed slightly worse than those developed with an imbalanced
class distribution. This suggest that changing the imbalance distribution of the data may affect model
performance.

In conclusion, RF + Response + TFIDF stands out with a relatively low test log loss of 1.0023
and a percentage misclassified of 29.64%. However, ”LR + Response + TFIDF (WCB)” emerged as
the optimal classifier with a test loss of 1.0125 and a misclassification rate of 30.97%. This model
achieved a commendable balance between training performance and generalization, as evidenced by
its high training log loss of 0.6457 compared to RF + Response + TFIDF training log loss of 0.3859
which may lead to overfitting. Additionally, probability outputs were obtained which can be used by
pathologists to justify their prediction and make accurate decisions.

6.5. Significance of Predicted Class Probabilities

Analyzing the probabilities for each test point is crucial for understanding the reliability of the
model predictions and their implications for clinical decision-making. The predicted probability for
some selected test points is shown in Table 8 . A wider gap between the highest and second-highest
probabilities generally indicates more confident predictions, while narrow gaps suggest uncertainty
that may require further investigation. Blue = Highest Probability
Green = Second highest probability

All test points from Table 8 were correctly predicted by our classifier. Notably, majority of these
test points exhibited substantial gaps between the highest and second-highest probabilities, such as
test point 3 which has the highest probability of 0.8826 and the second-highest probability of 0.0367
indicating a high level of certainty regarding the predicted class. However, the probabilities of 0.3889
and 0.1766 for test point 3, 0.4433 and 0.2119 for test point 6, and 0.4774 and 0.358 for test point 12
indicate closer class probabilities. This suggests a potential need for further assessment or additional
tests to ensure the precision of the predictions and also reduce error.

6.6. Precision and Recall Matrices

Although log loss and misclassified points provided the basis for evaluating our classifiers, preci-
sion and recall matrices were adopted since log loss is a single metric and does not provide detailed
information about the classifier’s behavior. However, precision and recall matrices give precision and
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Table 8. Class Probability For Correctly Classified Point

Test Pt Probabilities of Class Labels
1 2 3 4 5 6 7 8 9

1 0.0722 0.0503 0.0102 0.082 0.0285 0.0319 0.7192 0.0033 0.0025
2 0.0177 0.082 0.0109 0.062 0.0392 0.0318 0.7495 0.0042 0.0026
3 0.1149 0.1708 0.0209 0.1766 0.0734 0.0471 0.3889 0.0045 0.0029
4 0.0804 0.0981 0.0154 0.0399 0.0522 0.0404 0.6613 0.0052 0.0068
5 0.8661 0.0536 0.0068 0.0071 0.023 0.018 0.0153 0.0048 0.0013
6 0.1584 0.2119 0.0097 0.0865 0.0637 0.0156 0.4433 0.0052 0.0056
7 0.0659 0.0731 0.0134 0.6596 0.0439 0.0365 0.098 0.0048 0.0049
8 0.0623 0.0908 0.0159 0.6665 0.0493 0.0284 0.0757 0.0059 0.0052
9 0.0444 0.2041 0.012 0.0725 0.0825 0.0347 0.5424 0.0053 0.0021

10 0.7763 0.0654 0.0109 0.0233 0.0408 0.031 0.0378 0.0121 0.0021
11 0.8826 0.0367 0.0062 0.0197 0.0234 0.0148 0.0126 0.0032 0.0099
12 0.0457 0.03713 0.013 0.0265 0.358 0.0242 0.4774 0.0039 0.0022
13 0.06 0.7424 0.0124 0.0735 0.0378 0.0282 0.0383 0.00454 0.006
14 0.1035 0.6435 0.0143 0.0963 0.0421 0.0306 0.0613 0.0042 0.0043

recall for each class label which can be useful in making decisions, especially in our case where the
distribution of class labels are not balanced. This can be observed by the leading diagonal of each
matrix representing precision and recall for each class label. A well-performing classifier is expected
to have all values in the leading diagonal closer to one or display a darker green color, as observed in
the precision and recall matrices in Figure 21 and 22.

Precision matrix for best classifier Recall matrix for best classifier

Figure 22. Precision and Recall Matrices for Best classifier
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Precision matrix for random model Recall matrix for random model

Precision matrix for worst classifier Precision matrix for worst classifier

Figure 21. Precision and Recall Matrices for Random Model and Worst performing Classi-
fier

7. Conclusion

In this research, we extensively explored machine learning models to improve efficiency and accu-
racy in genetic mutation classification by computing feature importance, precision and recall matrices,
and probability values for the predicted class label, to enhance the model’s predictive performance.
LR + Response + TFIDF (WCB) emerged as the best classifier with a log-loss of 1.0125 and a mis-
classification rate of 30.97%. A noteworthy aspect of this model is the ability to provide molecular
pathologists with reasons behind the model’s predictions thereby minimizing misdiagnosis rates and
improving patient outcomes. Our developed classifier was cross-validated to ensure robustness. How-
ever, it’s essential to acknowledge the limitations posed by dataset availability.
Future research endeavors should prioritize expanding datasets and exploring advanced ML techniques
to further improve classification accuracy and interpretability. Our developed classifier could be val-
idated on external datasets to assess how well it can generalise. Collaboration between ML experts
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and molecular pathologists can improve accuracy in genetic mutation classification and personalized
medicine.
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A. (2020). Text messaging-based medical diagnosis using natural language processing and fuzzy
logic. Journal of Healthcare Engineering, 2020, 1–14.

51. Palanivinayagam, A., El-Bayeh, C. Z., & Damaševičius, R. (2023). Twenty years of machine-
learning-based text classification: A systematic review. Algorithms, 16(5), 236.

52. Pearson, E. S. (1925). Bayes’ theorem, examined in the light of experimental sampling. Biometrika,
388–442.

53. Saif, H., Fernandez, M., He, Y., & Alani, H. (2014). On stopwords, filtering and data sparsity for
sentiment analysis of Twitter.

54. Saba, T. (2020). Recent advancement in cancer detection using machine learning: Systematic sur-
vey of decades, comparisons and challenges. Journal of Infection and Public Health, 13(9), 1274-
1289.

55. Singh, A., & Jain, S. K. (2020, October). A personalized cancer diagnosis using machine learning
models based on big data. In 2020 Fourth International Conference on I-SMAC (IoT in Social,
Mobile, Analytics and Cloud)(I-SMAC) (pp. 763-771). IEEE.

56. Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys
(CSUR), 34(1), 1–47.

57. Shwartz-Ziv, R., & Tishby, N. (2017). Opening the black box of deep neural networks via informa-
tion. arXiv preprint arXiv:1703.00810.

58. Thakkar, D. (2019). Response Coding for Categorical Data. Retrieved from
https://medium.comthewingedwolf.winterfell/response-coding-for-categoric

59. Takenobu, T. (1994). Text categorization based on weighted inverse document frequency. Informa-
tion Processing Society of Japan, SIGNL, 94(100), 33-40.

60. Thompson, J., Hu, J., Mudaranthakam, D. P., Streeter, D., Neums, L., Park, M., ... Mayo, M. S.
(2019). Relevant word order vectorization for improved natural language processing in electronic
health records. Scientific Reports, 9(1), 9253.

61. Turkki, R., Byckhov, D., Lundin, M., Isola, J., Nordling, S., Kovanen, P. E., ... Lundin, J. (2019).
Breast cancer outcome prediction with tumour tissue images and machine learning. Breast Cancer
Research and Treatment, 177, 41–52.

62. Turtle, H. (1995). Text retrieval in the legal world. Artificial Intelligence and Law, 3 , 5–54.

Computational Journal of Mathematical and Statistical Sciences Volume 3, Issue 2, 280–315



315

63. Chekure, S. V. (2018). Personalized cancer diagnosis. Retrieved from
https://www.appliedaicourse.com/course/7/cancer-diagnosis-using-medical-records

64. Vapnik, V., & Chervonenkis, A. Y. (1964). A class of algorithms for pattern recognition learning.
Avtomat. i Telemekh, 25(6), 937–945.

65. Verma, M. (2012). Personalized medicine and cancer. Journal of Personalized Medicine, 2(1),
1–14.

66. Weston, J., & Watkins, C. (1998). Multi-class support vector machines. Technical report, Citeseer.

67. Wu, T.-F., Lin, C.-J., & Weng, R. (2003). Probability estimates for multiclass classification by
pairwise coupling. Advances in Neural Information Processing Systems, 16.

68. Wu, J., & Hicks, C. (2021). Breast cancer type classification using machine learning. Journal of
personalized medicine, 11(2), 61.

69. Yu, B., & Kwok, L. (2011). Classifying business marketing messages on Facebook. In Proceedings
of the Association for Computing Machinery Special Interest Group on Information Retrieval (pp.
24–28). Bejing, China.

70. Zeng, Z., Espino, S., Roy, A., Li, X., Khan, S. A., Clare, S. E., Jiang, X., Neapolitan, R., & Luo,
Y. (2018). Using natural language processing and machine learning to identify breast cancer local
recurrence. BMC Bioinformatics, 19(17), 65–74.

71. Zhao, H., Li, D. Y., Deng, W., & Yang, X. H. (2017). Research on vibration suppression method of
alternating current motor based on fractional order control strategy. Proceedings of the Institution
of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 231(4), 786–799.

72. Zhao, H., Zuo, S., Hou, M., Liu, W., Yu, L., Yang, X., & Deng, W. (2018). A novel adaptive signal
processing method based on enhanced empirical wavelet transform technology. Sensors, 18(10),
3323.

© 2024 by the authors. Disclaimer/Publisher’s Note: The content in all publica-
tions reflects the views, opinions, and data of the respective individual author(s)
and contributor(s), and not those of the scientific association for studies and ap-
plied research (SASAR) or the editor(s). SASAR and/or the editor(s) explicitly
state that they are not liable for any harm to individuals or property arising from
the ideas, methods, instructions, or products mentioned in the content.

Computational Journal of Mathematical and Statistical Sciences Volume 3, Issue 2, 280–315


	Introduction
	Related Literature
	 Methods Used
	 Data Cleaning and Exploratory
	Feature Transformation or Feature Extraction
	Supervised Learning Algorithm
	Model Evaluation Metric

	Data Description and Exploratory
	Train/Test Split
	Random Model Simulation
	Univariate Feature Analysis 
	Feature Extraction

	Model Training and Evaluation
	Random Forest + Response Coding + TFIDF Vectorizer
	Logistic Regression + Response Coding + TFIDF (WCB)
	Feature Importance

	Results and Discussion
	Multinomial Naive Bayes (MNB) Classifiers
	Support Vector Machine (SVM) Classifiers
	 Logistic Regression (LR) Classifiers
	 Random Forest (RF) Classifiers
	Significance of Predicted Class Probabilities
	Precision and Recall Matrices 

	Conclusion

