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Abstract: Copulas are multi-dimensional probabilistic functions that play a crucial role in modeling
complex dependence structures between random variables. The theory and applications of the three-
dimensional case have attracted considerable interest in recent years. This article discusses recent
developments in this specific topic and innovates in some aspects. More precisely, the first part pro-
posed to fill certain theoretical gaps concerning a modern copula called the ”product Ali-Mikhail-Haq
mixed” copula and to complete its knowledge. Among these gaps, the possible values of the involved
parameter that make it valid are revisited. The corresponding Spearman rho is also re-calculated.
Mathematical proofs and graphic work are given. The second part presents a result on generalized
convex mixed copulas and shows how the product Ali-Mikhail-Haq mixed copula can be considered
as a specific example. The novelty of this result is that it is general in the dimensional sense and
presents simple conditions to guarantee the validity of the resulting copula. Based on it, a new variant
of the three-dimensional Ali-Mikhail-Haq copula is given. In summary, for the first time, some existing
three-dimensional copulas are analyzed from the point of view of generalized convex mixture copulas
in multiple dimensions, thus opening new horizons for dependence modeling.

Keywords: Three-dimensional copulas; Ali-Mikhail-Haq copula; Farlie-Gumbel-Morgenstern
copula; Dependence modeling.
Mathematics Subject Classification: 60E15, 62H99
Received: 26 February 2024; Revised: 8 March 2024; Accepted: 25 March 2024; Published: 25 April 2024.

Copyright: © 2024 by the authors. Submitted for possible open access publication under the
terms and conditions of the Creative Commons Attribution (CC BY) license.

1. Introduction

Copula is a probabilistic notion that finds its origins in the work of Sklar (see [1] and [2]). Thanks to
it, flexible dependence models applicable to random vectors of varying dimensions can be constructed.
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In fact, at the center of this notion, there are “copulas”, defined as functions that establish a connection
between the marginal distribution functions and the parent joint distribution function. The precise
mathematical detail behind this claim was revealed in the famous Sklar theorem. We refer to [3],
[4], [5], [6], and [7]. Copulas can be of different functional natures. We may mention the normal,
log-normal, Student, Farlie-Gumbel-Morgenstern (FGM), Archimedean, piecewise, D-, and R-vine
copulas (see [8] and [9]), among others. The need to construct new copulas arises from the necessity
to model complex dependence structures beyond what traditional copulas can capture. This thereby
ensures a more accurate and flexible representation of multivariate distributions, which is essential in
various practical scenarios.

Parallel to the inexorable development of two-dimensional copulas, three-dimensional copulas have
recently experienced renewed interest. They find numerous applications in various applied fields due
to their ability to model the dependence structure between three random variables. For instance, in
finance, they are used for portfolio optimization and risk management, where understanding the joint
behavior of multiple assets is crucial. In environmental science, they help analyze the interactions
between three environmental variables, such as temperature, humidity, and precipitation, to predict
weather conditions or assess the impacts of climate change. Additionally, in engineering, three-
dimensional copulas are used to study the connections between three components in complex systems,
thereby facilitating reliability analysis and the improvement of system design. Some of the best-known
of three-dimensional copulas have been recently practically involved in [10], [11], [12], [13], and [14],
among others. New theoretically oriented methodologies on this topic can be found in [15], [16], [17],
[18], [19], [20], [21], and [22]. A brief overview of notable results is given below.

In [19], the following three-dimensional copula is studied:

C(x1, x2, x3) = Π(x1, x2, x3) + λx1x2(1 − x1)(1 − x2)xθ3, (x1, x2, x3) ∈ [0, 1]3,

where Π(x1, x2, x3) = x1x2x3 is the independence copula, θ ≥ 1 and |λ| ≤ 1/θ. In a certain sense,
the function D(x1, x2, x3) = λx1x2(1 − x1)(1 − x2)xθ3 can be thought of as a perturbation of the in-
dependence modeling. This construction presents a novel and easily manageable alternative to the
three-dimensional copulas documented in the literature. In particular, it mainly differs from the stan-
dard three-dimensional FGM copula by its non-exchangeability and the presence of the power term
xθ3.

In the same spirit, we can also cite the work in [21] describing the following three-dimensional
copula:

C(x1, x2, x3) = Π(x1, x2, x3) + λx1x2x3(x1 − x2)m(1 − x3)xθ3, (x1, x2, x3) ∈ [0, 1]3,

where m is a positive integer, θ ≥ 0 and |λ| ≤ 1/{(θ + 1) max[m(m − 1),m + 1]}. Thus, a
new perturbation mechanism of the independence copula is considered, represented by the function
E(x1, x2, x3) = λx1x2x3(x1 − x2)m(1 − x3)xθ3. The novelty of this perturbation function is that it is not
separable with respect to x1, x2 and x3 thanks to the term (x1 − x2)m.

Other options are suggested in [22]. In particular, the following three-dimensional copula is con-
sidered:

C(x1, x2, x3) = Π(x1, x2, x3) − λx1x2x3(1 − x2)(1 − x3), (x1, x2, x3) ∈ [0, 1]3, (1.1)
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where λ ∈ [−1, 1]. It was called the product FGM mixed (PFGM) copula. Thus, the function
F(x1, x2, x3) = λx1x2x3(1 − x2)(1 − x3) aims to perturb the three-dimensional independence copula.
It is separable with respect to x1, x2 and x3, but not exchangeable because of the absence of the term
1 − x1. In addition to the PFGM copula, still in [22], the following three-dimensional copula is exam-
ined:

C(x1, x2, x3) = Π(x1, x2, x3)
[
2 −

1
1 − λ(1 − x2)(1 − x3)

]
, (x1, x2, x3) ∈ [0, 1]3, (1.2)

which can also be written as

C(x1, x2, x3) = Π(x1, x2, x3) − λ
x1x2x3(1 − x2)(1 − x3)
1 − λ(1 − x2)(1 − x3)

, (x1, x2, x3) ∈ [0, 1]3,

where it is understood that λ belongs to [−1, 1]. It is mainly based on the Ali-Mikhail-Haq (AMH)
copula and was called the product AMH mixed (PAMM) copula. Again, a new perturbation function
of the three-dimensional independence copula is proposed, following a ratio-function scheme charac-
terized by G(x1, x2, x3) = −λx1x2x3(1− x2)(1− x3)/[1−λ(1− x2)(1− x3)]. In fact, the PFGM and PAMM
copulas established in [22] are based on a more general three-dimensional copula construction, which
can be expressed as follows:

C(x1, x2, x3) = 3Π(x1, x2, x3) − x3C∗(x1, x2) − x1C†(x2, x3), (x1, x2, x3) ∈ [0, 1]3, (1.3)

where C∗(x1, x2) and C†(x1, x2) are two two-dimensional copulas (see [22, Equation (13)]). Equiva-
lently, under a perturbation of the independence copula form, we can write it as

C(x1, x2, x3) = Π(x1, x2, x3) + 2x1x2x3 − x3C∗(x1, x2) − x1C†(x2, x3), (x1, x2, x3) ∈ [0, 1]3.

Based on this expression, the remarks below hold.

• The PFGM copula in Equation (1.1) is obtained by choosing C∗(x1, x2) = x1x2, i.e., the two-
dimensional independence copula, and C†(x2, x3) = x2x3+λx2x3(1−x2)(1−x3), where λ ∈ [−1, 1],
i.e., the two-dimensional FGM copula with parameter λ. It also corresponds to the following
product copula: C(x1, x2, x3) = x1C‡(x2, x3), where C‡(x2, x3) = x2x3 − λx2x3(1 − x2)(1 − x3) is
the FGM copula with parameter −λ.
• The PAMM copula in Equation (1.2) is obtained by choosing again C∗(x1, x2) = x1x2, and

C†(x2, x3) = x2x3/[1 − λ(1 − x2)(1 − x3)], i.e., the two-dimensional AMH copula with param-
eter λ. In [22], it is implicitly assumed, or at least understood, that λ ∈ [−1, 1]; this aspect will be
discussed later in the article.

Since the value variable x1 can be put in factor, i.e., isolated from x2 and x3, in both the definitions
of the PFGM and PAMM copulas, the associated uniform random variable, say X1, is supposed to be
independent of the other two uniform random variables, say X2 and X3. However, X2 and X3 are allowed
to exhibit some stochastic connection. With this in mind, the PFGM and PAMM copulas have been
applied in [22] on water quality measurements for the Chattahoochee River. The considered adequacy
criteria were the Akaike information criterion, Bayesian information criterion (AIC), consistent AIC
(CAIC), and Hannan-Quinn information criterion (HQIC). They gave quite convincing results, showing
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the importance of the PFGM and PAMM copulas in a practical data analysis scenario. The best being
the PAMM copula with λ estimated as −0.8349 and with the following values of the criteria: AIC
= 560.933, BIC = 574.725, CAIC = 563.421, and HQIC = 566.236. All of the above developments
represent a significant advance in the construction of three-dimensional models.

The contributions to this article take their source from the original work of [22]. In particular, as
implicitly mentioned in [22], the three-dimensional function in Equation (1.3) is not necessarily a valid
copula. This opens up some questions, including the determination of manageable conditions that make
it effectively valid. In the first part of the article, a specific example is emphasized; we show that the
PAMM copula in Equation (1.2) cannot be considered valid for all possible values of λ in [−1, 1]. We
study this aspect through mathematical developments, numerical analysis, and graphics. In particular,
we show that it is valid for λ ∈ [−1, 0], among others, which corresponds to the case considered in
the data analysis in [22], and attest to the importance of these published results. The possible positive
values for λ are also discussed. For the case λ ∈ [−1, 0], we revisit the expression of the Spearman
rho and show that the PAMM copula is of interest for small positive dependence. In the second part, a
generalized convex mixture copula is established, along with the underlying assumptions to ensure its
validity. Then we show that the construction in Equation (1.3) can be viewed as a particular example
of such a mixture copula strategy, which allows us to emphasize the assumptions making it valid. Our
general result goes beyond the three-dimensional case; it can be applied to any higher dimension. A
simple example presenting a variant of the three-dimensional AMH copula is finally provided.

The rest of the article is composed of three complementary sections. Section 2 recalls several
copula notions. Section 3 is about some new contributions to the PAMM copula. Section 4 discusses
the aforementioned general convex mixture copulas strategy. A conclusion is given in Section 5.

2. Basic copula notions

To begin, let us recall the general definition of an absolutely continuous copula in multiple dimen-
sions, thereby establishing a basis for our subsequent findings.

Definition 1. Let n ≥ 2 be a positive integer, representing a specific dimension. The function
C(x1, . . . , xn), (x1, . . . , xn) ∈ [0, 1]n, is designated as an absolutely continuous n-dimensional copula if
it adheres to the following properties:

(I) C(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0 for any (x1, . . . , xn) ∈ [0, 1]n and i = 1, . . . , n,

(II) C(1, . . . , 1, x, 1, . . . , 1) = x for any x ∈ [0, 1], and this condition applies independently to each of
the n vector components.

(III) ∂x1,...,xnC(x1, . . . , xn) ≥ 0 for any (x1, . . . , xn) ∈ (0, 1)n, where ∂x1,...,xn = ∂n/(∂x1 . . . ∂xn) denotes
the mixed n-th order partial derivatives according to x1, . . . , xn (it is understood that C(x1, . . . , xn)
is n times differentiable almost everywhere for (x1, . . . , xn) ∈ (0, 1)n).

We refer to [3] for more details on the notion of an absolutely continuous n-dimensional copula.
Below, to simplify the text, we omit the expression ”absolutely continuous”. From a mathematical
point of view, the conditions (I) and (II) are often immediate; the most difficult condition to prove
remains (III). Naturally, based on Definition 1, we obtain a two-dimensional copula by taking n = 2,
and a three-dimensional copula by taking n = 3.
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In full generality, as outlined in the introduction, the notion of n-dimensional copula plays a crucial
role in multivariate probability theory, providing a rigorous framework for modeling complex depen-
dence structures between n random variables. In particular, by denoting these random variables as
U1, . . . ,Un, the Sklar theorem ensures that the joint cumulative distribution function of (U1, . . . ,Un),
say H(u1, . . . , un), can be decomposed as

H(u1, . . . , un) = C[H(u1), . . . ,H(un)], (u1, . . . , un) ∈ Rn,

where C(x1, . . . , xn) denotes the corresponding n-dimensional copula and H(u1),. . . , H(un) are the
marginal cumulative distribution functions of U1, . . . ,Un, respectively (see [1] and [2]). Thus, the
importance of such copulas lies in providing a versatile tool for analyzing and simulating joint distri-
butions in various applied fields. Understanding their properties and applications improves our ability
to effectively assess and mitigate risks in complex systems.

Complementary to the notion of n-dimensional copula, the related notion of Spearman rho is re-
called below.

Definition 2. Let n ≥ 2 be a positive integer, and C(x1, . . . , xn), (x1, . . . , xn) ∈ [0, 1]n, be a n-
dimensional copula as defined in Definition 1. Then we define the Spearman rho associated with
C(x1, . . . , xn) as

ρ =
n + 1

2n − (n + 1)

[
2n
∫

[0,1]n
C(x1, . . . , xn)dx1 . . . , dxn − 1

]
.

The Spearman rho measures how strong the association is between the underlying random variables
associated with C(x1, . . . , xn). See [23] and [24] for more details. In the next section, a part will
investigate this measure for the PAMM copula in Equation (1.2), revisiting the result in [22, Proposition
4].

3. Contributions to the PAMM copula

In this section, we provide some contributions to the PAMM copula in Equation (1.2), as described
in [22].

3.1. Discussion

In the proposition below, we nuance the validity of the PAMM copula with respect to the possible
values of λ.

Proposition 3.1. There exist values of λ in [−1, 1] such that the three-dimensional function defined
in Equation (1.2), i.e.,

C(x1, x2, x3) = x1x2x3

[
2 −

1
1 − λ(1 − x2)(1 − x3)

]
, (x1, x2, x3) ∈ [0, 1]3,

is not a valid copula.

Proof. Based on Definition 1, we need to check the conditions (I), (II) and (III). Since (I) and (II) are
obvious (already mentioned in [22]) and do not involve the possible values of λ, let us concentrate our
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efforts on (III). For any (x1, x2, x3) ∈ (0, 1)3, we have

∂x1,x2,x3C(x1, x2, x3) = 2 − 2λ2 x2x3(1 − x2)(1 − x3)
[1 − λ(1 − x2)(1 − x3)]3 + λ

x2(1 − x3)
[1 − λ(1 − x2)(1 − x3)]2

+ λ
(1 − x2)x3

[1 − λ(1 − x2)(1 − x3)]2 − λ
x2x3

[1 − λ(1 − x2)(1 − x3)]2 −
1

1 − λ(1 − x2)(1 − x3)

= 2 −
λ2(1 − x2)(1 − x3) + λ[x2(x3 + 1) + x3 − 2] + 1

[1 − λ(1 − x2)(1 − x3)]3 .

This differentiation was also obtained in [22, Equation (19)]. Let us now show that it can be negative
for certain λ ∈ [−1, 1], and (x1, x2, x3) ∈ (0, 1)3, thus relativizing its validity in this domain parameter.

• For punctual evidence, by choosing λ = 0.9, x1 = 0.1 (among other values into (0, 1) since there
is no dependence in x1), x2 = 0.1, and x3 = 0.1, we numerically find that

∂x1,x2,x3C(x1, x2, x3) ≈ −0.266046 < 0.

Therefore, C(x1, x2, x3) is not a valid copula for any λ ∈ [−1, 1].
• For graphical evidence, since ∂x1,x2,x3C(x1, x2, x3) does not depend on x1, we can consider the two-

dimensional function ψ(x2, x3; λ) = ∂x1,x2,x3C(x1, x2, x3) and display it as a two-dimensional curve
(we thus voluntary reduce the problem to two dimensions). The aim is to analyze its positive and
negative values while varying λ. Figure 1 does that from a color contour point of view for several
values of λ. The software R combined with the package plot3Dwas used in this regard (see [25]).
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(a) (b)

(c) (d)
Figure 1. Plots of ψ(x2, x3; λ), (x2, x3) ∈ (0, 1)2 for (a) λ = 0.7, (b) λ = 0.8, (c) λ = 0.9, and
(d) λ = 1

From this figure, we easily identify ”light-yellow-green zones”, mainly in the neighborhood of
the point (0, 0), corresponding to the values of x2 and x3 for which ψ(x2, x3; λ) ≤ 0. This shows
that ∂x1,x2,x3C(x1, x2, x3) can be negative. Hence, C(x1, x2, x3) is not a copula for all the values λ
into [−1, 1].

This ends the proof. □

From this result, we complete the understanding of the PAMM copula as described in [22], demon-
strating that it cannot be used blindly for any λ ∈ [−1, 1].

3.2. Validity

In light of the previous comments on the PAMM copula, a theoretical examination of some possible
ranges of values for λ is done below.

Proposition 3.2. For either

• λ ∈ [−1, 0], or
• λ ∈ [0, λ0] with λ0 = 0.164,
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the three-dimensional function defined in Equation (1.2), i.e.,

C(x1, x2, x3) = x1x2x3

[
2 −

1
1 − λ(1 − x2)(1 − x3)

]
, (x1, x2, x3) ∈ [0, 1]3,

is a valid copula.

Proof. For any (x1, x2, x3) ∈ (0, 1)3, in the proof of Proposition 3.1, we have already shown that

∂x1,x2,x3C(x1, x2, x3) = 2 −
λ2(1 − x2)(1 − x3) + λ[x2(x3 + 1) + x3 − 2] + 1

[1 − λ(1 − x2)(1 − x3)]3 .

Let us now study the sign of this function. To achieve this aim, we first focus on the main ratio term.
For any λ ∈ [−1, 1], after a differentiation work, we remark that

λ2(1 − x2)(1 − x3) + λ[x2(x3 + 1) + x3 − 2] + 1 = [1 − λ(1 − x2)(1 − x3)]3∂x2,x3C
†(x2, x3),

where C†(x2, x3) denotes the two-dimensional AMH copula with parameter λ. Therefore, since 1 −
λ(1 − x2)(1 − x3) ≥ 1 − |λ| ≥ 0 and ∂x2,x3C

†(x2, x3) ≥ 0 as a basic property of any copula density
function, we get

λ2(1 − x2)(1 − x3) + λ[x2(x3 + 1) + x3 − 2] + 1 ≥ 0.

The numerator of the main ratio term is thus positive. Since 1− λ(1− x2)(1− x3) ≥ 0, the denominator
obviously is too. In light of this, one aim is to bound this ratio term in the sharpest way possible, then
compare it to the value 2, hoping to establish that ∂x1,x2,x3C(x1, x2, x3) ≥ 0.

• Let us suppose that λ ∈ [−1, 0]. Since (1 − x2)(1 − x3) ≥ 0 and λ2 ≤ |λ| = −λ, we have

λ2(1 − x2)(1 − x3) + λ[x2(x3 + 1) + x3 − 2] + 1
≤ −λ(1 − x2)(1 − x3) + λ[x2(x3 + 1) + x3 − 2] + 1.

Hence, since [1 − λ(1 − x2)(1 − x3)]3 ≥ 1 − λ(1 − x2)(1 − x3) ≥ 1, we obtain

λ2(1 − x2)(1 − x3) + λ[x2(x3 + 1) + x3 − 2] + 1
[1 − λ(1 − x2)(1 − x3)]3

≤
−λ(1 − x2)(1 − x3) + λ[x2(x3 + 1) + x3 − 2] + 1

1 − λ(1 − x2)(1 − x3)
. (3.1)

Hence, we get

∂x1,x2,x3C(x1, x2, x3) ≥ 2 −
−λ(1 − x2)(1 − x3) + λ[x2(x3 + 1) + x3 − 2] + 1

1 − λ(1 − x2)(1 − x3)
.

Now, since 1 − 2x2x3 ∈ [−1, 1], we establish that

− λ(1 − x2)(1 − x3) + λ[x2(x3 + 1) + x3 − 2] + 1 − 2[1 − λ(1 − x2)(1 − x3)]
= −λ(1 − 2x2x3) − 1 ≤ −λ − 1 ≤ 0.
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This inequality implies that

−λ(1 − x2)(1 − x3) + λ[x2(x3 + 1) + x3 − 2] + 1
1 − λ(1 − x2)(1 − x3)

≤ 2. (3.2)

As a result, we have

∂x1,x2,x3C(x1, x2, x3) ≥ 0.

Thus, in the case λ ∈ [−1, 0], C(x1, x2, x3) is a valid copula.
• Let us now suppose that λ ∈ [0, λ0] with λ0 = 0.164. The numerator of the ratio term can be

expressed as follows:

λ2(1 − x2)(1 − x3) + λ[x2(x3 + 1) + x3 − 2] + 1
= λ2(1 − x2)(1 − x3) + λ[−(1 − x2)(1 − x3) − 1 + 2x2x3] + 1
= −λ(1 − λ)(1 − x2)(1 − x3) − λ(1 − 2x2x3) + 1.

Since −λ(1 − λ) ≤ 0, (1 − x2)(1 − x3) ≥ 0, and 1 − 2x2x3 ∈ [−1, 1], we obtain

− λ(1 − λ)(1 − x2)(1 − x3) − λ(1 − 2x2x3) + 1 ≤ −λ(1 − 2x2x3) + 1
≤ 1 + λ.

Hence, since [1 − λ(1 − x2)(1 − x3)]3 ≥ (1 − λ)3 ≥ 0, we get

λ2(1 − x2)(1 − x3) + λ[x2(x3 + 1) + x3 − 2] + 1
[1 − λ(1 − x2)(1 − x3)]3 ≤

1 + λ
(1 − λ)3 .

For λ ≤ λ0 = 0.164, we have

∂x1,x2,x3C(x1, x2, x3) ≥ 2 −
1 + λ

(1 − λ)3 ≥ 0.

Thus, in the case of λ ∈ [0, λ0], C(x1, x2, x3) is a valid copula.

The desired results are established. □

The case λ ∈ [−1, 0] is the most interesting because the obtained range of values is simple to
handle, and it corresponds to the one considered in the application in [22]. Indeed, λ is estimated as
−0.8349 ∈ [−1, 0] for the water quality analysis data.

For the possible positive values of λ making C(x1, x2, x3) a valid copula, it is not claimed that the
indicated value of λ0 such that λ ∈ [0, λ0] is the optimal one; a greater value can certainly be determined
with more sharp inequality techniques. However, this optimal value remains difficult to identify, and it
is necessarily strictly inferior to 1 (and even 0.7), as discussed in Proposition 3.1.

3.3. Spearman rho

For the case λ ∈ [−1, 0], the expression of the Spearman rho of the PAMM copula in [22, Proposition
4] needs a revision since it involves the term log(λ − 1) which is not well defined. The revised version
is formulated below.
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Proposition 3.3. For λ ∈ [−1, 0], the Spearman rho of the PAMM copula defined in Equation (1.2)
is expressed as

ρ = 1 + 4
3λ + 2 log(1 − λ) − 2λ log(1 − λ) − (1 + λ) Li2(λ)

λ2 ,

where Li2(λ) =
∑∞

k=1 λ
k/k2 is the standard dilogarithm function.

Proof. Based on Definition 2 with n = 3, we get

ρ = 8
∫

[0,1]3
C(x1, x2, x3)dx1dx2dx3 − 1.

Thus, only the integral term needs special treatment. We have∫
[0,1]3

C(x1, x2, x3)dx1dx2dx3

=

{∫
[0,1]2

x2x3

[
2 −

1
1 − λ(1 − x2)(1 − x3)

]
dx2dx3

} [∫
[0,1]

x1dx1

]
.

A double integration and tedious developments give∫
[0,1]2

x2x3

[
2 −

1
1 − λ(1 − x2)(1 − x3)

]
dx2dx3

=
3λ + 2 log(1 − λ) − 2λ log(1 − λ) − (1 + λ) Li2(λ)

λ2 +
1
2
.

Since
∫

[0,1]
x1dx1 = 1/2, by considering the constants 8 and −1 involved in ρ, we obtain the desired

result. This completes the proof. □

Figure 2 displays the Spearman rho of the PAMM copula for λ ∈ [−1, 0] as obtained in the above
proposition. Again, the software R was used, along with the function polylog of the package copula.

Figure 2. Plots of the Spearman rho of the PAMM copula for λ ∈ [−1, 0]
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We observe that, for λ ∈ [−1, 0], the PAMM copula is able to model small positive dependence,
with 0.09035489 as a maximum value. This positivity is coherent with the fact that, for λ ∈ [−1, 0],
we have

C(x1, x2, x3) = Π(x1, x2, x3) − λ
x1x2x3(1 − x2)(1 − x3)
1 − λ(1 − x2)(1 − x3)

≥ Π(x1, x2, x3),

indicating the positive quadrant dependence of the PAMM copula.
We can also remark that the Kendall tau of the PAMM copula in [22, Proposition 3] also needs a

recalculation since it involves the term log(λ − 1), which is not well defined for λ ∈ [−1, 0].
Apart from the association measures, a more general aspect of this copula is examined in the rest of

the article.

4. Generalized convex mixture copulas

In this section, we demonstrate that the three-dimensional copula strategy described in Equation
(1.3), and the PAMM copula in particular, can be extended. This extension involves more intermediary
copulas and higher dimensions.

4.1. Result

The main result is formulated in full generality in the theorem below.

Theorem 4.1. We adopt the copula concept presented in Definition 1. Let m and n be pos-
itive integers, C1(x1, . . . , xn), . . . ,Cm(x1, . . . , xn), (x1, . . . , xn) ∈ [0, 1]n, be m n-dimensional cop-
ulas, c1(x1, . . . , xn), . . . , cm(x1, . . . , xn) be the corresponding copula densities, respectively, i.e.,
c j(x1, . . . , xn) = ∂x1,...,xnC j(x1, . . . , xn) for j = 1, . . . ,m, and (ξ1, . . . , ξm) ∈ Rm (it is important to note
that, for any j = 1, . . . ,m, ξ j can be either negative or positive). Let us consider the following gener-
alized convex mixture:

Cmix(x1, . . . , xn) =
m∑

j=1

ξ jC j(x1, . . . , xn). (4.1)

Suppose that
∑m

j=1 ξ j = 1 and
m∑

j=1

ξ j∥c j∥ξ j ≥ 0,

where

∥c j∥ξ j =


inf(x1,...,xn)∈(0,1)n c j(x1, . . . , xn) i f ξ j > 0
0 i f ξ j = 0
sup(x1,...,xn)∈(0,1)n c j(x1, . . . , xn) i f ξ j < 0

.

Then Cmix(x1, . . . , xn) is a valid n-dimensional copula.
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Proof. Based on Definition 1, we need to check the conditions (I), (II), and (III). To begin, for any
(x1, . . . , xn) ∈ [0, 1]n and i = 1, . . . , n, since C j(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0 for any j = 1, . . . ,m, we
have

Cmix(x1, . . . , xi−1, 0, xi+1, . . . , xn) =
m∑

j=1

ξ jC j(x1, . . . , xi−1, 0, xi+1, . . . , xn) =
m∑

j=1

ξ j × 0 = 0.

Thus, the condition (I) is satisfied.
For any x ∈ [0, 1], since C j(1, . . . , 1, x, 1, . . . , 1) = x and

∑m
j=1 ξ j = 1, we have

Cmix(1, . . . , 1, x, 1, . . . , 1) =
m∑

j=1

ξ jC j(1, . . . , 1, x, 1, . . . , 1)

=

m∑
j=1

ξ j × x = x × 1 = x.

Hence, the condition (II) holds.
Let us now examine the condition (III). For any (x1, . . . , xn) ∈ (0, 1)n, since

∑m
j=1 ξ j∥c j∥ξ j ≥ 0, thanks

to the definition of ∥c j∥ξ j , we have

∂x1,...,xnCmix(x1, . . . , xn) =
m∑

j=1

ξ j∂x1,...,xnC j(x1, . . . , xn)

=

m∑
j=1

ξ jc j(x1, . . . , xn) ≥
m∑

j=1

ξ j∥c j∥ξ j ≥ 0.

The condition (III) is satisfied. Therefore, Cmix(x1, . . . , xn) is validated as a n-dimensional copula. □

In fact, the ”standard” convex mixture copulas considering that ξ j ≥ 0 for any j = 1, . . . ,m is a
well-known topic (see [3] and [26]). Hence, the proposition above fixes the ideas and assumptions on
the validity of the generalized case that includes possible negative values for ξ j. The existing theory is
thus slightly modified, mainly with the introduction of the ”parameter-norm-like” of a copula density,
i.e., ∥c j∥ξ j .

4.2. Application to the three-dimensional case

In the proposition below, we show that the potential copula in Equation (1.3) is a particular case
of the generalized convex mixture copula in Equation (4.1). In addition, clear assumptions about the
intermediary copulas are given.

Proposition 4.2. Let C∗(x1, x2) and C†(x1, x2), (x1, x2) ∈ [0, 1]2, be two two-dimensional copulas,
and c∗(x1, x2) and c†(x1, x2) be the corresponding copula densities, respectively. Let us suppose that

∥c∗∥∞ + ∥c†∥∞ ≤ 3,

where ∥c∗∥∞ = sup(x1,x2)∈(0,1)2 c∗(x1, x2) and ∥c†∥∞ = sup(x1,x2)∈(0,1)2 c†(x1, x2). Then the three-dimensional
function

C(x1, x2, x3) = 3Π(x1, x2, x3) − x3C∗(x1, x2) − x1C†(x2, x3), (x1, x2, x3) ∈ [0, 1]3,

is a valid copula.
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Proof. Let us make the link between this result and Theorem 4.1. Let us consider the generalized
convex mixture function as described in Equation (4.1) with the following configuration: n = 3, m = 3,
ξ1 = 3, C1(x1, x2, x3) = Π(x1, x2, x3), ξ2 = −1, C2(x1, x2, x3) = x3C∗(x1, x2), ξ3 = −1 and C3(x1, x2, x3) =
x1C†(x2, x3), noticing that C2(x1, x2, x3) and C3(x1, x2, x3) are well-defined three-dimensional copulas
based on a standard product scheme. Then the function in Equation (4.1) becomes the desired candidate
expression, i.e.,

Cmix(x1, x2, x3) = 3Π(x1, x2, x3) − x2C∗(x1, x2) − x1C†(x2, x3).

Let us check that the conditions in Theorem 4.1 are satisfied. It is obvious that
3∑

j=1

ξ j = 3 − 1 − 1 = 1.

In addition, we have ∂x1,x2,x3C1(x1, x2, x3) = 1, ∂x1,x2,x3C2(x1, x2, x3) = ∂x1,x2C
∗(x1, x2) = c∗(x1, x2), and

∂x1,x2,x3C3(x1, x2, x3) = ∂x2,x3C
†(x2, x3) = c†(x2, x3). As a result, since ξ1 = 3 > 0 (so different to 0), we

have ∥∂x1,x2,x3C1∥ξ1 = 1, since ξ2 = −1 < 0, we have ∥∂x1,x2,x3C2∥ξ2 = ∥c
∗∥∞ and, since ξ3 = −1 < 0, we

have ∥∂x1,x2,x3C3∥ξ3 = ∥c
†∥∞. Therefore, if ∥c∗∥∞ + ∥c†∥∞ ≤ 3, we obtain

3∑
j=1

ξ j∥∂x1,x2,x3C j∥ξ j = 3 × 1 + (−1) × ∥c∗∥∞ + (−1) × ∥c†∥∞

= 3 − ∥c∗∥∞ − ∥c†∥∞ ≥ 0.

It follows from Theorem 4.1 that Cmix(x1, x2, x3), so C(x1, x2, x3), is a valid copula. □

This proposition thus offers the theoretical basis of Equation (1.3) as described in [22]. In particular,
the PFGM copula in Equation (1.1) is obtained by choosing C∗(x1, x2) = x1x2, i.e., ∥c∗∥∞ = 1, and
C†(x2, x3) = x2x3 + λx2x3(1 − x2)(1 − x3), where λ ∈ [−1, 1], i.e.,

∥c†∥∞ = sup
(x2,x3)∈(0,1)2

[1 + λ(1 − 2x2)(1 − 2x3)] = 1 + |λ|.

Hence, it is clear that
∥c∗∥∞ + ∥c†∥∞ ≤ 1 + 1 + |λ| ≤ 3.

The assumptions in Proposition 4.2 are thus satisfied, ensuring that the PFGM copula is valid.
The PAMM copula in Equation (1.2) is obtained by choosing C∗(x1, x2) = x1x2, i.e., ∥c∗∥∞ = 1, and

C†(x2, x3) = x2x3/[1 − λ(1 − x2)(1 − x3)], but the condition ∥c∗∥∞ + ∥c†∥∞ ≤ 3 is not satisfied for all
λ ∈ [−1, 1], as discussed in Proposition 3.1.

Of course, several other copula configurations are possible, beyond the standard ones. Two exam-
ples are given below.

Example 1: We can consider the Celebioglu-Cuadras copula established in [27]. It is defined by

C(x1, x2) = x1x2 exp[µ(1 − x1)(1 − x2)], (x1, x2) ∈ [0, 1]2,

with µ ∈ [−1, 1]. Then the corresponding copula density is indicated a

c(x1, x2) = exp[µ(1 − x1)(1 − x2)]×
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µ2x1x2(1 − x1)(1 − x2) + µx1(3x2 − 1) − µx2 + 1

]
, (x1, x2) ∈ (0, 1)2.

Thanks to the simplicity of this expression, we can bound it and modulate the bound by tuning µ.
For instance, a direct bound (far from the optimal one) gives ∥c∥∞ ≤ µ2/4 + |µ| + 1, and we can
modulate µ to have the desired condition.

Example 2: We can consider the new ratio copula established in [28]. It is specified as

C(x1, x2) = x1x2
(1 + ν)(1 + νx1x2)
(1 + νx1)(1 + νx2)

, (x1, x2) ∈ [0, 1]2,

with ν ≥ −1/4. Then the corresponding copula density is obtained as

c(x1, x2) = (1 + ν)
1 + νx1x2(2 + νx1)(2 + νx2)

(1 + νx1)2(1 + νx2)2 , (x1, x2) ∈ (0, 1)2.

We can easily bound it and modulate the result via ν. For instance, for ν ≥ 0, a direct bound (far
from the optimal one) gives ∥c∥∞ ≤ (1 + ν)[1 + ν(2 + ν)2], and we can select ν to have the desired
condition.

The originality of the generalized convex mixture copula strategy in Theorem 4.1 is concretized by
a new three-dimensional copula approach, as shown in the proposition below.

Proposition 4.3. Let α ≥ 0, β ≥ 0, γ ≥ 0 and C∗(x1, x2), C†(x1, x2) and C△(x1, x2), (x1, x2) ∈ [0, 1]2,
be three two-dimensional copulas, and c∗(x1, x2), c†(x1, x2) and c△(x1, x2) be the corresponding copula
densities, respectively. Let us suppose that

α∥c∗∥∞ + β∥c†∥∞ + γ∥c△∥∞ ≤ κ,

where κ = 1 + α + β + γ. Then the three-dimensional function

C(x1, x2, x3) = κΠ(x1, x2, x3) − αx1C∗(x2, x3) − βx2C†(x1, x3) − γx3C△(x2, x1),
(x1, x2, x3) ∈ [0, 1]3, (4.2)

is a valid copula.

Proof. It is an application of Theorem 4.1. To prove this claim, we consider the generalized convex
mixture function as described in Equation (4.1) with n = 3, m = 4, ξ1 = κ, C1(x1, x2, x3) = Π(x1, x2, x3),
ξ2 = −α, C2(x1, x2, x3) = x1C∗(x2, x3), ξ3 = −β, C3(x1, x2, x3) = x2C†(x1, x3), ξ4 = −γ and
C4(x1, x2, x3) = x3C△(x2, x1). Thus defined, it is clear that C2(x1, x2, x3), C3(x1, x2, x3) and C4(x1, x2, x3)
are well-defined three-dimensional copulas based on the product scheme. Then the function in Equa-
tion (4.1) becomes the desired expression, i.e.,

Cmix(x1, x2, x3) = κΠ(x1, x2, x3) − αx1C∗(x2, x3) − βx2C†(x1, x3) − γx3C△(x2, x1).

By the definition of κ, let us notice that

4∑
j=1

ξ j = κ − α − β − γ = 1.
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Furthermore, we have ∂x1,x2,x3C1(x1, x2, x3) = 1, ∂x1,x2,x3C2(x1, x2, x3) = ∂x2,x3C
∗(x2, x3) = c∗(x2, x3),

∂x1,x2,x3C3(x1, x2, x3) = ∂x1,x3C
†(x1, x3) = c†(x1, x3), and ∂x1,x2,x3C4(x1, x2, x3) = ∂x2,x1C

△(x2, x1) =
c△(x2, x1). As a result, since ξ1 = κ > 0 (so different to 0), we have ∥∂x1,x2,x3C1∥ξ1 = 1, since
ξ2 = −α ≤ 0, we have ∥∂x1,x2,x3C2∥ξ2 = ∥c

∗∥∞ or ∥∂x1,x2,x3C2∥ξ2 = 0 if α = 0, since ξ3 = −β ≤ 0,
we have ∥∂x1,x2,x3C3∥ξ3 = ∥c

†∥∞ or ∥∂x1,x2,x3C3∥ξ3 = ∥c
†∥∞ = 0 if β = 0, and since ξ4 = −γ ≤ 0, we

have ∥∂x1,x2,x3C4∥ξ4 = ∥c
△∥∞ or ∥∂x1,x2,x3C4∥ξ4 = ∥c

△∥∞ = 0 if γ = 0. Therefore, owing to the assumption
α∥c∗∥∞ + β∥c†∥∞ + γ∥c△∥∞ ≤ κ, we have

4∑
j=1

ξ j∥∂x1,x2,x3C j∥ξ j = κ × 1 + (−α) × ∥c∗∥∞ + (−β) × ∥c†∥∞ + (−γ) × ∥c△∥∞

= κ − α∥c∗∥∞ − β∥c†∥∞ − γ∥c△∥∞ ≥ 0.

It follows from Theorem 4.1 that Cmix(x1, x2, x3), so C(x1, x2, x3), is a valid copula. □

We can write the copula in Equation (4.2) a perturbation of the three-dimensional independence
copula, in the following form:

C(x1, x2, x3) = Π(x1, x2, x3) + (κ − 1)x1x2x3 − αx1C∗(x2, x3) − βx2C†(x1, x3)
− γx3C△(x2, x1), (x1, x2, x3) ∈ [0, 1]3.

The next result illustrates one aspect of the findings of Proposition 4.3 by proposing a variant of
the three-dimensional AMH copula (or PAMM copula) through the use of three intermediary two-
dimensional AMH copulas.

Proposition 4.4. Let α ≥ 0, β ≥ 0, γ ≥ 0 such that α+ β+ γ ≤ 1, and λ∗ ∈ [−1, 0], λ† ∈ [−1, 0], and
λ△ ∈ [−1, 0]. Then the three-dimensional function

C(x1, x2, x3) = Π(x1, x2, x3) − αλ∗
x1x2x3(1 − x2)(1 − x3)
1 − λ∗(1 − x2)(1 − x3)

− βλ†
x1x2x3(1 − x1)(1 − x3)
1 − λ†(1 − x1)(1 − x3)

− γλ△
x1x2x3(1 − x2)(1 − x1)
1 − λ△(1 − x2)(1 − x1)

, (x1, x2, x3) ∈ [0, 1]3, (4.3)

is a valid copula.

Proof. The proof can be viewed as a consequence of Proposition 4.3, using the two-dimensional AMH
copula. Indeed, let C∗(x1, x2), C†(x1, x2) and C△(x1, x2) be the AMH copula with parameters λ∗, λ† and
λ△, respectively, i.e.,

C∗(x1, x2) =
x1x2

1 − λ∗(1 − x1)(1 − x2)
,

C†(x1, x2) =
x1x2

1 − λ†(1 − x1)(1 − x2)
,

and
C△(x1, x2) =

x1x2

1 − λ△(1 − x1)(1 − x2)
, (x1, x2) ∈ [0, 1]2.

By setting κ = 1 + α + β + γ, we have

C(x1, x2, x3) = κΠ(x1, x2, x3) − αx1C∗(x2, x3) − βx2C†(x1, x3) − γx3C△(x2, x1)
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= Π(x1, x2, x3) − αλ∗
x1x2x3(1 − x2)(1 − x3)
1 − λ∗(1 − x2)(1 − x3)

− βλ†
x1x2x3(1 − x1)(1 − x3)
1 − λ†(1 − x1)(1 − x3)

− γλ△
x1x2x3(1 − x2)(1 − x1)
1 − λ△(1 − x2)(1 − x1)

.

Thus, it is enough to check if the assumptions of Proposition 4.3 are satisfied. The copula density
associated with C∗(x2, x3) is given by

c∗(x2, x3) =
(λ∗)2(1 − x2)(1 − x3) + λ∗[x2(x3 + 1) + x3 − 2] + 1

[1 − λ∗(1 − x2)(1 − x3)]3 .

Since λ∗ ∈ [−1, 0], by proceeding as in Equations (3.1) and (3.2), we establish that ∥c∗∥∞ ≤ 2. Similarly,
since λ† ∈ [−1, 0] and λ△ ∈ [−1, 0], we obtain ∥c†∥∞ ≤ 2, and ∥c△∥∞ ≤ 2. By using the assumption
α + β + γ ≤ 1, we get

α∥c∗∥∞ + β∥c†∥∞ + γ∥c△∥∞ ≤ 2(α + β + γ) ≤ 1 + α + β + γ = κ.

We can apply Proposition 4.3, ensuring that C(x1, x2, x3) is a valid copula. □

To the best of our knowledge, the variant of the three-dimensional AMH copula indicated in Equa-
tion (4.3) is new in the literature. It can also be viewed as an original copula based on the perturbation
of the three-dimensional independence copula. Since it depends on 6 parameters, its practical use
may necessitate considering some fixed values to avoid the overparameterization phenomenon, which
mainly appears in a parametric estimation scenario. In particular, one can think to consider α = ζ/2,
β = ζ/2 and γ = 1 − ζ with ζ ∈ [0, 1], and λ∗ = λ† = λ△ = ι, with ι ∈ [−1, 0], which yields a
manageable two-parameter three-dimensional copula. However, its application in a real data analysis
scenario remains a challenge to explore in another study.

5. Conclusion

In conclusion, the ideas presented in this article arise from the work of [22] on various constructions
of three-dimensional copulas. Specifically, it was noted that the general three-dimensional function in
[22, Equation (13)] may not be a copula stricto sensu. This raises questions about the assumptions
ensuring its validity. It is especially true for the PAMM copula, which remains one of the most innova-
tive examples. Through mathematical derivations, numerical analyses, and graphical representations,
one of our contributions revealed that the PAMM copula with the parameter λ is not valid for any
λ ∈ [−1, 1]. However, a more in-depth investigation has shown that it is for λ ∈ [−1, λ0], with λ0 < 0.7.
Additionally, we revisited the expression of the Spearman rho, demonstrating the usefulness of the
PAMM copula in scenarios of small positive dependence. In another part, we introduced a generalized
convex mixture copula strategy, along with the assumptions required for its validity. The function in
[22, Equation (13)] emerged as a specific case of such a strategy. Notably, our general result may
depend on many intermediary copulas and goes beyond the three-dimensional scenario; it is applicable
to higher-dimensional copulas. Finally, we applied it to construct a variant of the three-dimensional
AMH copula, providing insight into the practical implications of our theoretical framework. With this
work, we hope to further advance the topic of copula theory and contribute to the development of
three-dimensional dependence models in particular.
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