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Abstract: The competing risks model plays a pivotal role in the analysis of various fields, including
engineering, econometrics, and biology. When a product being tested is likely to fail due to multiple
factors, these factors conflict with each other to precipitate product failure. This situation is referred
to as the competing risks problem. This paper focuses in particular on a competing risks model that
employs a generalized progressive hybrid type-II censoring scheme . It assumes that the underlying
lifetime distributions of the failure causes follow Weibull distribution with different scale and common
shape parameters. The paper derives maximum likelihood estimates and Bayes estimates , utilizing
Markov Chain Monte Carlo techniques for computing Bayes estimates and credible intervals. Further,
Bayes estimates of the parameters which obtained based on squared error and linear exponential loss
functions under the assumptions of independent Gamma priors. To illustrate these concepts, the paper
includes simulation studies and real-world examples.
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1. Introduction:

In survival analysis, experimental units may fail due to more than one causes. The experimenter
observes time of failure of the experimental units along with the corresponding causes of failure. The
causes compete with each other for failure of the experimental units. This kind of studies are known as
the competing risks problem in literature. The causes of failure in the competing risks data analysis can
be assumed to be dependent or independent where the data consists of a failure time and the associated
cause of failure. Censored data occurs when an experimenter or reliability practitioner desires to
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stop a life test before getting the entire sample. As a result, the available data are actually censored.
The conventional censoring schemes, namely type-I and type-II have been widely used in reliability
studies. The experimental time is fixed in Type-I censoring scheme, but the number of observed failures
is a random variable. On the other hand, in Type-II censoring scheme, the experimental time is a
random variable while the number of observed failures is fixed. Hybrid censoring is the combination
of Type-I and Type-II censoring schemes. If the experiment ends at the time point T ∗1 = min (x(r),T )
it is referred to as hybrid type I (HT-I) proposed by Epstein [9]. The experiment is referred to as a
hybrid type-II , suggested by Childs et al. [3], if it ends at the time point T ∗2 = max (x(r),T ). These
schemes have the disadvantage of not allowing the units to be removed from the experiment at any
point other than the terminal point. To deal with this problem, a more general censoring scheme called
progressive type-II ((PT-II)) censoring is used. Balakrishnan and Aggarwala [1] and Wu [16] proposed
another type of censoring called progressive censoring allows removal of units from the test at times
other than the final termination point. Cho and Lee [5], derived point and interval estimations for the
unknown parameters of exponential distribution under generalized progressive hybrid type-II (GPHT-
II) censoring in presence of competing risks data when the cause of failure is known.

Childs et al. [3] proposed progressive hybrid type-II censoring scheme with the purpose of increas-
ing the efficiency of statistical analysis as well as saving the overall testing time. The drawback of
proposed progressive hybrid type-II censoring scheme is that the length of the experiment can be quite
large. For this motivation, Cho et al. [4] proposed GPH type-II censoring scheme, which the exper-
iment is guaranteed to terminate at a pre-fixed time. Kundu and Koley [12], obtained the maximum
likelihood estimators for the unknown parameters based of exponential distribution basesd on GPH
Type-II and also obtained confidence intervals.

Gorny and Cramer [10], introduced a new censoring scheme called GPH Type-II censoring which
can be explain as follows: suppose n identical units are placed on a life testing experiment with r, T1

and T2 pre-fixed with r ≤ n and 0 < T1 < T2 < ∞. The censoring scheme R1,R2, ....,Rr (where Ri ≥ 0

, i = 1, ....., r) are pre-fixed integers satisfies
r∑

i=1

Ri + r = n. Then, at the time of the first failure x(1), R1

of the remaining units are randomly removed. Similarly at the time of the second failure x(2), R2 of
the remaining units are removed and so on. This process continues until, immediately following the
terminated time T •2 = max (T1,min(T2, x(r))), all the remaining units are removed from the experiment
as a schematic illustration in Figure 1. If x(r) < T1, then instead of terminating the test by withdrawing
the remaining Rr items after the rth failure, we continue to observe failures (without any further
withdrawals) up to time T1. Therefore, Rr = Rr+1 = .... = RD1 = 0. If T1 < x(r) < T2, terminate the test
at x(r). If x(r) > T2, terminate the test at time T2. Note that GPH type-II censored schemes modifies
progressive hybrid type-II censored schemes by guaranteeing that the test will be completed by time
T2. Therefore, T2 represents the absolute longest that the researcher is willing to allow the experiment
to continue. In this scheme, the data is one of the following types

x(1) < .... < x(r) < x(r+1) < .... < x(D1) i f x(r) < T1, case1

x(1) < ..... < x(D1) < ..... < x(r) i f T1 < x(r) < T2, case2

x(1) < .... < x(D1) < .... < x(D2) i f T1 < T2 < x(r). case3
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Figure 1. Schematic illustration of GPH type-II censoring scheme

The likelihood function of the GPH type-II censoring scheme can be found in Cho et al. [4] as the
following form

L =



D1∏
i=1

r∑
V=i

(RV + 1)
D1∏
i=1

f (x(i))
(
1 − F(x(i))

)Ri(1 − F(T1))R∗D1 , case 1

r∏
i=1

r∑
V=i

(RV + 1)
r∏

i=1

f (x(i))
(
1 − F(x(i))

)Ri , case 2

D2∏
i=1

r∑
V=i

(RV + 1)
D2∏
i=1

f (x(i))
(
1 − F(x(i))

)Ri(1 − F(T2))R∗D2 , case 3

(1.1)

where R∗D1
= n − D1 −

r−1∑
i=1

Ri, and R∗D2
= n − D2 −

D2∑
i=1

Ri.

In this paper, the research question behind it is ”How to find the estimate of competing risk under
GPH type-II for Weibull distribution ?”. Therefore, we summarize our work as follows
1. the MLEs and approximate confidence intervals (ACIs) are introduced for the unknown parameters
in the presence of competing risks when the cause of failure of each item is known.
2. Obtain maximum likelihood estimators (MLEs), approximate two-sided confidence intervals .
3. Bayesian estimators obtained using symmetric and asymmetric loss functions.
4. Create the highest posterior density (HPD) intervals using the Markov chain Monte Carlo (MCMC)
algorithm.
5. A simulation study is conducted under various sample sizes.
6. Bayesian estimates are reached by assuming independent gamma priors and using squared error loss
(SEL) function and linear exponential (LINEX) loss function. As expected, Bayesian estimates under
SEL and LINEX loss functions cannot be obtained in closed forms. A real data set has been provided
for illustration.
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The rest article will be organized as follows: in Section 2, model description is presented. Maximum
likelihood Estimation and Bayesian method are discussed in Sections 3 and 4 , respectively. In Section
5, simulation study is performed. Real data set is provided in Section 6. Finally, Section 7 contains the
conclusions.

2. Model Description

Consider a lifetime experiment with n identical units where its lifetimes are described by inde-
pendent and identically distributed (iid) random variables X1, X2, ..Xn. Without loss of generality, we
assume that there are only two causes of failure. Let X ji denotes the lifetime of the ith item under
the jth cause of failure for i = 1, 2, .....n, j = 1, 2 and Xi = min(X1i, X2i). The competing risks model
assumes that the data consists of a failure time and an indicator denoting the cause of failure. We use
the latent failure time modeling of Cox [6] and Pintilie [15] for analyzing competing risks data. In the
latent failure time modeling, it is assumed that competing causes of failures are independent random
variables.

Consider a population, where every units failed due to one of the two known causes; 1 and 2. A
unit is selected at random from the population. Let the variable ∆i is the indicator denoting the cause
of failure of the observation, i.e, failure due to cause 1 (∆i = 1), or failure due to cause 2 (∆i = 2), or
failure due to one of the causes 1 or 2 but it is unknown (∆i = ∗). Here, ∆i = j, j = 1, 2 means the unit
i has failed due to cause j, while ∆i = ∗ means that the cause of failure of unit i is unknown. Under the
GPH type-II censoring scheme in presence of competing risk data, we mainly have three cases

Case 1 x(r) < T1,

Case 2 T1 < x(r) < T2,

Case 3 T1 < T2 < x(r).

Under the above three cases, we get three different sets of failure-times as

Case 1 (x(1),∆1,R1) < ... < (x(r−1),∆r−1,Rr−1) < (x(r),∆r, 0) < ... < (T1,R∗D1
)

Case 2 (x(1),∆1,R1) < ....... < (x(D1),∆D1 ,RD1) < ...... < (x(r),∆r,Rr),

Case 3 (x(1),∆1,R1) < ...... < (x(D1),∆D1 ,RD1) < ..... < (x(D2),∆D2 ,R
∗
D2

).

where

I(∆i = j) =

1 i f j = 1, 2.
0 otherwise.

and
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I(∆i = ∗) =

1 i f ∆i = ∗.

0 otherwise.

The likelihood function of GPH type-II censored under competing risks when the cause of fail-
ure is known can be written as follows

L =



γ

D1∏
i=1

(h∆i(x(i)))
2∏

j=1

(
F̄ j(x(i))

)(
F̄(x(i))

)Ri(F̄(T1))R∗D1 , case 1

γ

r∏
i=1

(h∆i(x(i)))
2∏

j=1

(
F̄ j(x(i))

)(
F̄(x(i))

)Ri , case 2

γ

D2∏
i=1

(h∆i(x(i)))
2∏

j=1

(
F̄ j(x(i))

)(
F̄(x(i))

)Ri(F̄(T2)
)R∗D2 . case 3

(2.1)

where γ =
j∗∏

i=1

r∑
V=i

(RV+1), j∗ = D1, j∗ = r, j∗ = D2 for case 1,2 and 3 respectively,R∗D1
= n−D1−

r−1∑
i=1

Ri,

R∗D2
= n − D2 −

D2∑
i=1

Ri, F̄(T ) = F̄1(T )F̄2(T ), h∆i(x(i)) the hazard rate function under the cause of failure

∆i = j.

In this paper, we make inference under the assumption that the latent failure times follow two
parameter Weibull distribution with different scale parameters λ1, λ2>0, λ1 , λ2, the same shape
parameter β and the cause of failure is known. The probability density function (pdf) , the cumulative
distribution function (cdf) , survival function (SF) and hazard function (HF) of X ji from jth cause of
failure are, respectively, given by

f j(x; λ j, β) = λ jβxβ−1e−λ j xβ; x, λ j, β > 0 (2.2)

F j(x; λ j, β) = 1 − e−λ j xβ , (2.3)

F̄ j(x; λ j, β) = e−λ j xβ , (2.4)

and

h j(x; λ j, β) = λ jβxβ−1. (2.5)

3. Maximum Likelihood Estimation

In this section, the MLEs and the corresponding ACIs of the unknown parameters β, λ j, j = 1, 2 are
presented under GPH type-II in presence of competing risks. Also, the relative risk rates due to cause
1 and cause 2 are derived.
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3.1. Point Estimation

Based on equations (2),(5) and (6), the natural logarithm of the likelihood function of GPH type-II
in presence of competing risks can be written as

ln L = ln γ + j∗ ln β + j1 ln λ1 + j2 ln λ2 + (β − 1)
j∗∑

i=1

ln x(i) − (λ1 + λ2)w. (3.1)

where

γ =



D1∏
i=1

r∑
V=i

(RV + 1), case1

r∏
i=1

r∑
V=i

(RV + 1), case2,

D2∏
i=1

r∑
V=i

(RV + 1), case3

j∗ =



D1 =

D1∑
i=1

I(∆i = j), j = 1, 2 case1

r =
r∑

i=1

I(∆i = j), j = 1, 2 case2,

D2 =

D2∑
i=1

I(∆i = j), j = 1, 2 case3

j1 =



d1 =

D1∑
i=1

I(∆i = 1), case1

r1 =

r∑
i=1

I(∆i = 1), case2,

e1 =

D2∑
i=1

I(∆i = 1), case3

j2 =



d2 =

D1∑
i=1

I(∆i = 2), case1

r2 =

r∑
i=1

I(∆i = 2), case2.

e2 =

D2∑
i=1

I(∆i = 2), case3

and
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w =



D1∑
i=1

xβ(i)(Ri + 1) + R∗D1
T β1 , case1

r∑
i=1

xβ(i)(Ri + 1), case2.

D2∑
i=1

xβ(i)(Ri + 1) + R∗D2
T β2 . case3

where R∗D1
= n − D1 −

r−1∑
i=1

Ri, and R∗D2
= n − D2 −

D2∑
i=1

Ri.

Differentiating equation (8) with respect to β, λ1 and λ2, respectively, we obtained

∂ ln L
∂β
=

j∗

β
+

j∗∑
i=1

ln x(i) − (λ1 + λ2)w′,

∂ ln L
∂λ1

=
j1

λ1
− w,

∂ ln L
∂λ2

=
j2

λ2
− w.

where

w′ =



D1∑
i=1

xβ(i)(Ri + 1) ln x(i) + R∗D1
T β1 ln T1, , case1

r∑
i=1

xβ(i)(Ri + 1) ln x(i) case2.

D2∑
i=1

xβ(i)(Ri + 1) ln x(i) + R∗D2
T β2 ln T2, case3

The MLEs of β, λ j where j = 1, 2 cannot be expressed in closed form. So we need to employ some
required numerical approach for computing the MLEs of β, λ j. We present the relative risk rates, RR1

and RR2 due to causes 1 and 2, respectively, in closed forms. The relative risk related to cause 1 is
calculated as follows:

RR1 = p(X1i < X2i) =
∫ ∞

0
f1(x)F̄2(x)dx,

=

∫ ∞

0
f1(x)e−λ2 xβdx,

= λ1β

∫ ∞

0
xβ−1e−(λ1+λ2)xβdx.

Relative risk related to cause 2 is computed as

RR2 = 1 − RR1,
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= 1 − λ1β

∫ ∞

0
xβ−1e−(λ1+λ2)xβdx.

3.2. Interval Estimation

Because the MLEs of the unknown parameters β, λ1 and λ2 are not obtained in closed form, it is not
possible to derive the exact distribution of the MLE. In this section, we derive the confidence intervals
of the parameters based on the asymptotic variance covariance matrix J−1

0 for the maximum likelihood
of the parameters to build the ACIs. The asymptotic variance-covariance matrix is given by

J−1
0 �



−
∂2 ln L
∂λ2

1

−
∂2 ln L
∂λ1∂λ2

−
∂2 ln L
∂λ1∂β

−
∂2 ln L
∂λ2∂λ1

−
∂2 ln L
∂λ2

2

−
∂2 ln L
∂λ2∂β

−
∂2 ln L
∂β∂λ1

−
∂2 ln L
∂β∂λ2

−
∂2 ln L
∂β2



−1

β=β̂,λ1=λ̂1,λ2=λ̂2

�


var(λ̂1) cov(λ̂1, λ̂2) .... cov(λ̂1, β̂)

cov(λ̂2, λ̂1) var(λ̂2) .... cov(λ̂2, β̂)
: : :::: :

cov(λ̂s, λ̂1) cov(β̂, λ̂2) .... var(β̂)


β=β̂,λ1=λ̂1,λ2=λ̂2

where

∂2 ln L
∂λ1∂λ2

=
∂2 ln L
∂λ2∂λ1

= 0,

∂2 ln L
∂λ2

1

= −
j1

λ2
1

,

∂2 ln L
∂λ2

2

= −
j2

λ2
2

,

∂2 ln L
∂λ1∂β

=
∂2 ln L
∂λ2∂β

= −w′,

∂2 ln L
∂β2 = −

j∗

β2 − (λ1 + λ2)w′′,

where

w′′ =



D1∑
i=1

xβ(i)(Ri + 1)(ln x(i))2 + R∗D1
T β1 (ln T1)2, case1

r∑
i=1

xβ(i)(Ri + 1)(ln x(i))2, case2.

D2∑
i=1

xβ(i)(Ri + 1)(ln x(i))2 + R∗D2
T β2 (ln T2)2, case3
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Also, we obtained the 100(1 − α)% confidence intervals for the parameters β, λ1 and λ2 using
the normal approximate of the MLEs and asymptotic variance covariance matrix, as

β̂ − Zα/2
√

var(β̂), β̂ + Zα/2
√

var(β̂),

λ̂1 − Zα/2
√

var(λ̂1), λ̂1 + Zα/2
√

var(λ̂1),

λ̂2 − Zα/2
√

var(λ̂2), λ̂2 + Zα/2
√

var(λ̂2).

where Zα/2 is the percentile of the standard normal distribution with right-tail probability α/2.

4. Bayesian Estimation

In this section, we consider Bayesian inference of the unknown parameters when the latent failure
times follow Weibull distribution based on competing risks model using GPH type-II censoring scheme
with competing risks. BEs and HPD credible intervals were obtained for the unknown parameters.

4.1. Prior distributions

In this subsection, we assumed that the priors of β, λ1 and λ2 are independent and follow gamma
(a1, b1), gamma (a2, b2) and gamma (a3, b3), respectively. Therefore, the priors for β, λ1 and λ2 are of
the forms

π(β) =
ba1

1

Γa1
βa1−1e−b1β β>0 and a1, b1>0.

π(λ1) =
ba2

2

Γa2
λa2−1

1 e−b2λ1 λ1>0 and a2, b2>0,

and

π(λ2) =
ba3

3

Γa3
λa3−1

2 e−b3λ2 λ2>0 and a3, b3>0,

then, the joint prior is given by

π(β, λ1, λ2) = π(β)π(λ1)π(λ2). (4.1)

4.2. Posterior Distribution

Based on equation(8), the posterior density function of the parameters β, λ1 and λ2 can be written
as follows:

π(β, λ1, λ2|x) =
L(x1, x2, ......, xn|λ)π(β, λ1, λ2)

∞∫
0

∞∫
0

∞∫
0

L(x1, x2, ......, xn|λ)π(β, λ1, λ2)dβdλ1dλ2

, (4.2)
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∝ βa1+ j∗−1λ
a2+ j1−1
1 λ

a3+ j2−1
2 e−

(
λ1(w+b1)+λ2(w+b2)

)
e
−

(
β
(

b3−

j∗∑
i=1

ln x(i)
))
.

Bayes estimator of any function of β, λ1 and λ2, say ζ(β, λ1, λ2) under SEL function is the pos-
terior mean, denoted by ζ̃(β, λ1, λ2) and can be obtained as follows:

ζ̃(β, λ1, λ2) =

∞∫
0

∞∫
0

∞∫
0
ζ(β, λ1, λ2)L(x1, x2, ......, xn|λ)π(β, λ1, λ2)dβdλ1dλ2

∞∫
0

∞∫
0

∞∫
0

L(x1, x2, ......, xn|λ)π(β, λ1, λ2)dβdλ1dλ2

, (4.3)

Bayes estimator of ζ(β, λ1, λ2) cannot be expressed in closed form, so we need to employ some
approximation method to compute the estimate given in (10). We propose to use MCMC method to
obtain BEs and HPD credible intervals of the unknown parameters. This method is particularly useful
in Bayesian inference as a result of focusing on subsequent distributions that are often difficult to work
with through mathematical analysis. MH algorithm starts with simulating a candidate sample θ∗ from
the proposal distribution q(.). Samples from the proposal distribution are not accepted automatically
as posterior samples; they are accepted probabilistically based on the acceptance probability.
MH sampling algorithm, developed by Metropolis et al. [14] , Hastings [11] and David [7], can be
described as followss:
Step 1: Start with any initial guess θ which θ(0) = (β̂, λ̂1, λ̂2).
Step 2: Set t = 1.
Step 3: Generate θ∗ with normal proposal distribution q(θ) = N(θ̂, var(θ̂)).
Step 4: Given the candidate point θ∗, calculate the acceptance probability

A(θ(t−1), θ∗) = min
[
1,
π(θ∗|x)q(θ(t−1)|θ∗)
π(θ(t−1)|x)q(θ∗|θ(t−1))

]
.

Step 5: Generate a sample from uniform distribution, i.e., u ∼ u(0, 1).

If


u ≤ A(θ(t−1), θ∗) Accept θ∗ = θ(t),

u ≥ A(θ(t−1), θ∗) Accept θ(t) = θ(t−1).

Step 6: Set t = t + 1, and repeat steps 2-5 M times until get M samples and obtain
(β(t), λ(t)

1 , λ
(t)
2 ), t = 1, 2, .....M.

From the random samples of size M drawn from the posterior density, some of the initial samples can
be discarded (burn-in), and remaining samples can be carried out to calculate BEs. Then, BEs of θ
with respect to SEL function is

θ̃ =

M∑
t=⋎+1

θ(t)/(M − ⋎).

where ⋎ represent the number of burn-in samples and t = ⋎ + 1, .....M.
Step 7: To obtain the HPD credible intervals of θ, arrange θt = (βt, λt

1, λ
t
2), for t = 1, 2, ....M in an

ascending order, as θ[1], θ[2], ...θ[M], after burn in as θ[⋎+1], θ[⋎+2], ...θ[M], then for arbitrary 0<α<1, the
100(1 − α)% two-sided HPD credible interval of θ can be obtained as(
θ[(α/2)(M−⋎)], θ[(1−(α/2))(M−⋎)]).
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Then the HPD credible interval of θt is that interval which has the smallest width. Step 8: Under
LINEX loss function, we obtain BEs of θ as

θ =
1
c

M∑
t=⋎+1

e−cθt/(M − ⋎).

5. Simulation Study

The study evaluates the performance of theoretical results, including point and interval estimators,
using maximum likelihood and Bayesian methods. Monte Carlo simulation study is performed when
initial values of the parameters of WD are (β, λ1, λ2) = (1, 0.2, 0.3) and (β, λ1, λ2) = (1.5, 0.4, 0.7), By
considering different combinations of n(sample sizes for each cause of failure), r(effective sample size),
R(removal pattern) and Ti, i = 1, 2 (threshold points), we generate a large 1000 GPH type-II censored
samples from WD. Further, different values of (n, r,T2) are taken and T1 = 0.7 (fixed). In each setting,
the MLEs , BEs and the corresponding ACIs /HPD are evaluated. Three different progressive censoring
schemes are
Sc-I: R1 = n − r,Ri = 0 for i , 1
Sc-II:Rr/2 = n − r,Ri = 0,for i ,

r
2

Sc-III: Rr = n − r,Ri = 0 for i , r.
Consider the following different cases in Table 1.

Table 1. Different cases considered for simulation when T2 = (.8, 1)

Sc-I Sc-II Sc-III
n = 30, r = 10,T1 = 0.7 n = 30, r = 10,T1 = 0.7 n = 30, r = 10,T1 = 0.7
n = 30, r = 20,T1 = 0.7 n = 30, r = 20,T1 = 0.7 n = 30, r = 20,T1 = 0.7
n = 50, r = 20,T1 = 0.7 n = 50, r = 20,T1 = 0.7 n = 50, r = 20,T1 = 0.7
n = 50, r = 30,T1 = 0.7 n = 50, r = 30,T1 = 0.7 n = 50, r = 30,T1 = 0.7

Note that in the simulation study the performance of proposed point estimates are compared based
on root mean squared errors (RMSEs). The performance of the proposed interval estimates are com-
pared with respect to average interval lengths (AILs) and coverage probability (CP).

• RMSE: It is given by

√√
1
N

N∑
τ=1

(θ̃i
τ
− θi)2 for i = 1, 2, 3, where N denotes the number of replications

in the Monte carlo simulation and θ1 = β, θ2 = λ1, θ3 = λ2. The smaller value of RMSE represents an
estimator with better accuracy.
• AIL: The smaller length of the interval estimates indicates that the prediction model represents better
accuracy with the experimental data.
• CP: The probability that true parameter value is contained in the interval estimates. When the value
of CP is nearly about the nominal value, that is, 100(1 − α)% , then it provides better result in terms of
CP.

Note that in simulation study BEs are obtained under SEL and LINEX function ( when c = 1.5).
It is clear that the values of hyper-parameters are obtained by using the elicitation method. The
method of hyper-parameter will depend on the prior knowledge of the unknown parameters . These
informative priors will be obtained from the MLEs for (β, λ1, λ2) by equating the mean and variance
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of (β̂t, λ̂t
1, λ̂

t
2) with the mean and variance of the priors under consideration (Gamma priors), where

t = 1, 2...,M and M is the number of samples available from Weibull distribution. Thus, on equating
mean and variance of (β̂t, λ̂t

1, λ̂
t
2) with the mean and variance of Gamma priors, one can obtain (Dey et

al. [8])

a1

b1
=

1
M

M∑
t=1

β̂t,
a1

b2
1

=
1

M − 1

M∑
t=1

(
β̂t −

1
M

M∑
t=1

β̂t)2,
a2

b2
=

1
M

M∑
t=1

λ̂t
1,

a2

b2
2

=
1

M − 1

M∑
t=1

(
λ̂1

t
−

1
M

M∑
t=1

λ̂t
1
)2
,

a3

b3
=

1
M

M∑
t=1

λ̂t
2 and

a3

b2
3

=
1

M − 1

M∑
t=1

(
λ̂t

2 −
1
M

M∑
t=1

λ̂t
2
)2
.

By solving the above equations , the estimated hyper-parameters can be written as

a1 =

( 1
M

M∑
t=1

β̂t)2
1

M−1

M∑
t=1

(
β̂t −

1
M

M∑
t=1

β̂t)2 ,

b1 =

( 1
M

M∑
t=1

β̂t)
1

M−1

M∑
t=1

(
β̂t −

1
M

M∑
t=1

β̂t)2 ,

a2 =

( 1
M

M∑
t=1

λ̂t
1
)2

1
M−1

M∑
t=1

(
λ̂t

1 −
1
M

M∑
t=1

λ̂t
1
)2 ,

b2 =

( 1
M

M∑
t=1

λ̂t
1
)

1
M−1

M∑
t=1

(
λ̂t

1 −
1
M

M∑
t=1

λ̂t
1
)2 ,

a3 =

( 1
M

M∑
t=1

λ̂t
2
)2

1
M−1

M∑
t=1

(
λ̂t

2 −
1
M

M∑
t=1

λ̂t
2
)2
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and

b3 =

( 1
M

M∑
t=1

λ̂t
2
)

1
M−1

M∑
t=1

(
λ̂t

2 −
1
M

M∑
t=1

λ̂t
2
)2 . (5.1)

Based on the generated data, MLEs and associated 95% ACIs / HPD are computed. Note that the
initial guess values are considered to be the same as the true parameter values while obtaining MLEs
and subsequently get the hyper-parameter values from equation (11). These values, hyper-parameters,
are then plugged-in to calculate the desired estimates. At the end, using MH algorithm to calculate
BEs, 2000 burn-in samples are discarded among the total 10000 MCMC samples generated from the
posterior density. From Tables 2, 3, 4 and 5, it is observed that:
• All BEs of parameters are derived with respect to two different loss functions, SEL and LINEX func-
tion. Under LINEX function associated estimates are obtained for c = 1.5.
• All of the average estimates and related RMSEs for both methods are showed.
• Under fixed censoring schemes, as the effective increases (i.e., n or r or T2, or their combinations),
the AEs and RMSEs of both MLEs and BEs for parameter β decrease. Also, the AEs and RMSEs of
both MLEs and BEs for parameter λ1 and λ2 increases.
• For fixed value of n, when effective sample size r increases, the simulated RMSEs decreases for most
cases.
• Under fixed censoring schemes, the RMSE for parameter β increase of MLEs and RMSEs for pa-
rameters λ1 and λ2 decrease of MLEs when T2 increase.
• Based on AEs and RMSEs, the Bayes estimates under SEL and LINEX provide better results than
other estimates for MLEs.

In case of interval estimates, from Tables 6, 7, 8 and 9, some observations are made, which are
presented below:
•When sample size n and effective sample size r increase, AILs of intervals for parameters β, λ1 and
λ2 decrease.
• Based on AIL and CP, the HPD credible intervals perform better than confidence interval of the
MLEs.
• Further, the corresponding AILs and CPs for all the proposed confidence intervals, namely; ACIs and
HPD interval are presented when T2 = 0.8 and T2 = 1, respectively.
•When the values of time thresholds T2 increase, the length of intervals decrease.
•The performance of classical and Bayesian estimates are quite satisfactory.
• The performance of BEs relative to LINEX loss function have perform better than SEL function.
•It has been observed that censoring Sc-III provides the smallest RMSE and AIL among three censor-
ing schemes for most cases.

Moreover, as further illustration, the trace and density plots for all parameters in an MCMC trace
with their histograms for each parameter and the convergence of MCMC estimation for β, λ1 and λ2 of
GPHT-II using MH algorithm are showed in Figure 2.
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Figure 2. MCMC trace plots , histograms and convergence for β, λ1 and λ2 using MH
algorithm.

6. Real Data

A real data set is analyzed in this section to illustrate the proposed competing risk model. Lawless
[13] provides real data set that concerns failure times for electrical applications subjected to automatic
life tests. Although there were 18 different causes of failure in original data, most of causes of failure
appeared once and only modes 6 and 9 appeared more than twice. In this example, we are mainly fo-
cusing on failure mode 9 viewed it as cause one, and treated all other failure modes as cause two. Each
failure time point in the original data set has been divided by one thousand for computational conve-
nience. Transformed failure times of the electronic applications are reported in Table 10. Hence, the
total number of observed failures due to causes 1 and 2 from the complete failure times are 19 and 17,
respectively. Before further proceeding, we investigate whether Weibull distribution can be employed
or not to analyze these data. Since the Kolmogorov–Smirnov distances and the corresponding p-values
(within bracket) for cause one and cause two are 0.1596(0.6607) and 0.2359(0.2570), respectively, it
is seen that Weibull distribution provides a reasonable model for these data. Moreover, as further il-
lustration, the empirical cumulative distributions plot and the fitted densities plot with a histogram of
probability are graphed in Figure 3, which also imply that Weibull distribution provides a reasonable
fit for these data.

From Table 10 , we took n = 36, we have r = 24,R1 = 6,R24 = 6 and Ri = 0 for i = 2, ..., 23. Based
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Table 2. AEs , RMSEs of the MLEs and BEs at (β, λ1, λ2) = (1, 0.2, 0.3) and T2 = .8

n r T1 Scheme par
MLEs BEs

SEL LINEX (c=1.5)
AE RMSE AE RMSE AE RMSE

30 10 .7 I β 1.1632 0.5703 1.0986 0.1146 1.0904 0.1072
λ1 0.1172 0.2917 0.2821 0.1219 0.2801 0.1238
λ2 0.1587 0.3513 0.3721 0.1319 0.3696 0.1343

II β 1.0814 0.6002 1.0973 0.1117 1.0898 0.1048
λ1 0.0966 0.3116 0.2666 0.1358 0.2649 0.1374
λ2 0.1291 0.3784 0.3400 0.1626 0.3376 0.1649

III β 0.9867 0.5061 1.1003 0.1161 1.0926 0.1091
λ1 0.0784 0.3236 0.2526 0.1492 0.2511 0.1507
λ2 0.1040 0.3983 0.3205 0.1813 0.3184 0.1833

30 20 .7 I β 1.1603 0.5033 1.0841 0.1036 1.0762 0.0967
λ1 0.1364 0.2778 0.2657 0.1397 0.2641 0.1411
λ2 0.1650 0.3474 0.3449 0.1602 0.3429 0.1621

II β 1.1553 0.4805 1.0835 0.1045 1.0757 0.0977
λ1 0.1427 0.2699 0.2649 0.1414 0.2633 0.1428
λ2 0.1719 0.3409 0.3431 0.1635 0.3412 0.1653

III β 1.1451 0.4788 1.0842 0.1039 1.0765 0.0973
λ1 0.1451 0.2750 0.2617 0.1447 0.2601 0.1461
λ2 0.1753 0.3436 0.3393 0.1678 0.3374 0.1695

50 20 .7 I β 1.1242 0.3871 1.1092 0.1284 1.1016 0.1216
λ1 0.1346 0.2754 0.2537 0.1519 0.2522 0.1531
λ2 0.1680 0.3404 0.3316 0.1744 0.3298 0.1760

II β 1.0073 0.3277 1.1048 0.1264 1.0973 0.1196
λ1 0.1082 0.2945 0.2358 0.1668 0.2346 0.1679
λ2 0.1382 0.3651 0.3095 0.1938 0.3079 0.1952

III β 0.9372 0.3155 1.1097 0.1322 1.1021 0.1253
λ1 0.0899 0.3109 0.2193 0.1821 0.2182 0.1831
λ2 0.1139 0.3871 0.2883 0.2132 0.2869 0.2148

50 30 .7 I β 1.0836 0.3348 1.0881 0.1148 1.0809 0.1087
λ1 0.1349 0.2746 0.2386 0.1674 0.2375 0.1685
λ2 0.1646 0.3451 0.3091 0.1974 0.3076 0.1987

II β 1.0903 0.3229 1.0899 0.1139 1.0827 0.1077
λ1 0.1449 0.2661 0.2406 0.1670 0.2395 0.1679
λ2 0.1759 0.3354 0.3109 0.1977 0.3095 0.1989

III β 1.0657 0.3145 1.0899 0.1163 1.0827 0.1103
λ1 0.1373 0.2699 0.2339 0.1722 0.2328 0.1732
λ2 0.1669 0.3410 0.3022 0.2052 0.3008 0.2064
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Table 3. AEs , RMSEs of the MLEs and BEs at (β, λ1, λ2) = (1, 0.2, 0.3) and T2 = 1

n r T1 Scheme par
MLEs BEs

SEL LINEX (c=1.5)
AE RMSE AE RMSE AE RMSE

30 10 .7 I β 1.1949 0.5989 1.0903 0.1081 1.0823 0.1010
λ1 0.1328 0.2815 0.2897 0.1143 0.2876 0.1162
λ2 0.1783 0.3345 0.3812 0.1231 0.3785 0.1256

II β 1.0517 0.5798 1.0957 0.1128 1.0878 0.1058
λ1 0.1061 0.3514 0.2696 0.1327 0.2677 0.1345
λ2 0.1376 0.3977 0.3552 0.1470 0.3530 0.1492

III β 0.9429 0.4644 1.1027 0.1197 1.0946 0.1123
λ1 0.0781 0.3235 0.2534 0.1482 0.2518 0.1497
λ2 0.1031 0.3984 0.3357 0.1655 0.3337 0.1675

30 20 .7 I β 1.1549 0.4476 1.0482 0.0769 1.0410 0.0719
λ1 0.1643 0.2595 0.2714 0.1401 0.2697 0.1414
λ2 0.1995 0.3234 0.3511 0.1624 0.3490 0.1640

II β 1.1649 0.4771 1.0517 0.0812 1.0444 0.0762
λ1 0.1761 0.2476 0.2764 0.1362 0.2746 0.1375
λ2 0.2131 0.3108 0.3571 0.1577 0.3549 0.1593

III β 1.1642 0.4693 1.0578 0.0849 1.0504 0.0795
λ1 0.1797 0.2480 0.2787 0.1326 0.2769 0.1340
λ2 0.2178 0.3079 0.3596 0.1540 0.3574 0.1557

50 20 .7 I β 1.0618 0.2719 1.0398 0.0801 1.0334 0.0765
λ1 0.1509 0.2644 0.2351 0.1759 0.2339 0.1768
λ2 0.1825 0.3339 0.3021 0.2108 0.3007 0.2119

II β 1.0973 0.2955 1.0501 0.0849 1.0437 0.0806
λ1 0.1678 0.2485 0.2461 0.1676 0.2449 0.1685
λ2 0.2009 0.3161 0.3144 0.2015 0.3130 0.2026

III β 1.0718 0.2840 1.0459 0.0859 1.0396 0.0819
λ1 0.1713 0.2414 0.2503 0.1623 0.2491 0.1632
λ2 0.2078 0.3064 0.3205 0.1948 0.3189 0.1959

50 30 .7 I β 1.0979 0.3240 1.0512 0.0896 1.0446 0.0853
λ1 0.1698 0.2478 0.2545 0.1587 0.2532 0.1597
λ2 0.2065 0.3113 0.3275 0.1881 0.3259 0.1893

II β 1.1109 0.3206 1.0618 0.0947 1.0551 0.0899
λ1 0.1834 0.2303 0.2663 0.1453 0.2649 0.1464
λ2 0.2234 0.2909 0.3422 0.1718 0.3404 0.1732

III β 1.0766 0.3064 1.0684 0.1014 1.0616 0.0963
λ1 0.1631 0.2444 0.2547 0.1528 0.2534 0.1539
λ2 0.2005 0.3078 0.3286 0.1806 0.3270 0.1819
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Table 4. AEs , RMSEs of the MLEs and BEs at (β, λ1, λ2) = (1.5, 0.4, 0.7) and T2 = .8

n r T1 Scheme par
MLEs BEs

SEL LINEX (c=1.5)
AE RMSE AE RMSE AE RMSE

30 10 .7 I β 1.4101 0.5446 1.7651 0.2889 1.7470 0.2714
λ1 0.1375 0.5770 0.5150 0.1877 0.51021 0.1923
λ2 0.1924 0.7170 0.6905 0.2119 0.6843 0.2179

II β 1.2204 0.5599 1.7791 0.3028 1.7608 0.2851
λ1 0.1018 0.5994 0.4875 0.2141 0.4832 0.2183
λ2 0.1403 0.7613 0.6519 0.2494 0.6462 0.2550

III β 1.0916 0.5728 1.7896 0.3146 1.7715 0.2969
λ1 0.0818 0.6185 0.4631 0.2379 0.4592 0.2418
λ2 0.1119 0.7884 0.6212 0.2795 0.6162 0.2846

30 20 .7 I β 1.6384 0.5716 1.7112 0.2388 1.6941 0.2228
λ1 0.2653 0.4559 0.5168 0.1934 0.5124 0.1973
λ2 0.3330 0.5913 0.6811 0.2320 0.6754 0.2370

II β 1.5905 0.5635 1.7232 0.2494 1.7060 0.2331
λ1 0.2477 0.4733 0.5104 0.1975 0.5061 0.2014
λ2 0.3130 0.6077 0.6739 0.2357 0.6683 0.2408

III β 1.5182 0.5078 1.7411 0.2660 1.7238 0.2494
λ1 0.2161 0.4977 0.4949 0.2104 0.4909 0.2142
λ2 0.2725 0.6405 0.6539 0.2525 0.6486 0.2575

50 20 .7 I β 1.4196 0.4018 1.8034 0.3278 1.7865 0.3113
λ1 0.1601 0.5419 0.4626 0.2397 0.4591 0.2432
λ2 0.2106 0.6918 0.6166 0.2860 0.6118 0.2906

II β 1.2285 0.4228 1.8092 0.3357 1.7923 0.3192
λ1 0.1199 0.5805 0.4276 0.2735 0.4245 0.2766
λ2 0.157 0.7429 0.5712 0.3300 0.5671 0.3340

III β 1.1221 0.4805 1.8155 0.3451 1.7988 0.3287
λ1 0.0990 0.6011 0.4010 0.2997 0.3983 0.3024
λ2 0.1292 0.7710 0.5363 0.3643 0.5327 0.3679

50 30 .7 I β 1.5472 0.3977 1.7391 0.2710 1.7235 0.2564
λ1 0.2526 0.4574 0.4812 0.2277 0.4776 0.2309
λ2 0.3151 0.5955 0.6318 0.2787 0.6272 0.2829

II β 1.4716 0.3931 1.7734 0.3004 1.7574 0.2849
λ1 0.2078 0.4989 0.4513 0.2524 0.4482 0.2554
λ2 0.2605 0.6470 0.5946 0.3102 0.5905 0.3141

III β 1.3836 0.3698 1.7874 0.3162 1.7713 0.3006
λ1 0.1733 0.5287 0.4262 0.2763 0.2328 0.2791
λ2 0.2190 0.6835 0.5626 0.3403 0.5589 0.3439
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Table 5. AEs , RMSEs of the MLEs and BEs at (β, λ1, λ2) = (1.5, 0.4, 0.7) and T2 = 1

n r T1 Scheme par
MLEs BEs

SEL LINEX (c=1.5)
AE RMSE AE RMSE AE RMSE

30 10 .7 I β 1.3119 0.4448 1.4634 0.2873 1.4454 0.2699
λ1 0.2384 0.4761 0.4158 0.1867 0.4110 0.1914
λ2 0.3937 0.5156 0.6916 0.2106 0.6853 0.2167

II β 1.2210 0.5607 1.5790 0.3027 1.5607 0.2850
λ1 0.3019 0.4993 0.4876 0.2139 0.4833 0.2181
λ2 0.24046 0.5794 0.6520 0.2493 0.6464 0.2549

III β 1.3916 0.4728 1.5896 0.3146 1.5715 0.2963
λ1 0.2818 0.3825 0.4631 0.2379 0.4592 0.2418
λ2 0.3119 0.5216 0.6212 0.2795 0.6161 0.2846

30 20 .7 I β 1.6807 0.5991 1.6778 0.2113 1.6615 0.1967
λ1 0.3076 0.4143 0.5429 0.1642 0.5381 0.1686
λ2 0.4863 0.5358 0.7145 0.1945 0.7084 0.2001

II β 1.6128 0.5777 1.7043 0.2340 1.6876 0.2186
λ1 0.3663 0.4540 0.4229 0.1808 0.4198 0.1850
λ2 0.5384 0.5808 0.6923 0.2137 0.6865 0.2192

III β 1.6310 0.5134 1.5292 0.2562 1.5122 0.2401
λ1 0.2280 0.4858 0.4050 0.1983 0.4008 0.2023
λ2 0.4884 0.5243 0.6671 0.2364 0.6617 0.2417

50 20 .7 I β 1.4219 0.4030 1.8018 0.3261 1.7849 0.3097
λ1 0.1613 0.5406 0.4641 0.2378 0.4605 0.2414
λ2 0.2126 0.6898 0.6186 0.2834 0.6139 0.2881

II β 1.2285 0.4228 1.8091 0.3355 1.7922 0.3190
λ1 0.2120 0.5804 0.4277 0.2734 0.4246 0.2764
λ2 0.2578 0.5517 0.5713 0.3298 0.5672 0.3339

III β 1.3221 0.4805 1.7155 0.3451 1.6988 0.3287
λ1 0.2990 0.3613 0.4010 0.2997 0.3983 0.3024
λ2 0.4292 0.5945 0.5363 0.3643 0.5327 0.3679

50 30 .7 I β 1.5643 0.4053 1.7238 0.2585 1.7086 0.2445
λ1 0.2702 0.4381 0.4972 0.2077 0.4934 0.2113
λ2 0.3392 0.5695 0.6529 0.2527 0.6480 0.2573

II β 1.4763 0.3958 1.7681 0.2960 1.7522 0.2808
λ1 0.2132 0.4933 0.4570 0.2458 0.4537 0.2489
λ2 0.2679 0.6395 0.6020 0.3014 0.5978 0.3055

III β 1.3859 0.3704 1.7855 0.3146 1.7694 0.2991
λ1 0.1753 0.5267 0.4286 0.2734 0.4258 0.2762
λ2 0.2218 0.6807 0.5658 0.3365 0.5621 0.3402
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Table 6. AILs and CPs of the MLEs and Bayes estimates at (β, λ1, λ2) = (1, 0.2, 0.3) and
T2 = 0.8

n r T1 Scheme parameter
ACI HPD

SEL LINEX (c=1.5)
AIL CP AIL CP AIL CP

30 10 .7 I β 1.3486 90.5 0.2174 98.6 0.2134 98.6
λ1 0.2412 95.8 0.1130 97.1 0.1115 97.1
λ2 0.2963 96.5 0.1229 98.5 0.1214 98.4

II β 1.2712 89.9 0.2025 98.8 0.1994 98.7
λ1 0.1983 97.9 0.0957 97.6 0.0945 97.5
λ2 0.2404 97.3 0.1207 99.5 0.1189 99.1

III β 1.1723 89.6 0.2199 98.6 0.2169 98.6
λ1 0.1587 98.4 0.0846 97.5 0.0835 97.5
λ2 0.1893 97.7 0.1015 98.0 0.1003 98.0

30 20 .7 I β 1.1528 90.7 0.2260 97.1 0.2221 97.8
λ1 0.2109 92.2 0.1575 97.6 0.1556 97.6
λ2 0.2344 93.0 0.1752 97.2 0.1731 97.2

II β 1.1091 90.1 0.2339 98.5 0.2303 98.5
λ1 0.2120 90.3 0.1566 96.4 0.1554 96.6
λ2 0.2349 88.9 0.1691 98.2 0.1675 98.0

III β 1.0759 89.7 0.2266 98.3 0.2239 98.4
λ1 0.2141 91.6 0.1580 96.9 0.1568 97.0
λ2 0.2375 89.4 0.1723 97.0 0.1701 96.9

50 20 .7 I β 0.9398 89.5 0.2585 98.8 0.2545 98.9
λ1 0.1926 92.3 0.1498 97.9 0.1480 97.9
λ2 0.2177 91.7 0.1629 96.9 0.1611 96.9

II β 0.8459 89.9 0.2686 98.3 0.2651 96.9
λ1 0.1523 95.7 0.1176 97.1 0.1165 97.1
λ2 0.1746 93.7 0.1440 97.8 0.1427 97.7

III β 0.7955 89.9 0.2771 97.6 0.2729 97.7
λ1 0.1256 97.8 0.0899 98.5 0.0891 98.6
λ2 0.1433 96.9 0.1142 98.0 0.1129 98.0

50 30 .7 I β 0.8297 90.1 0.2811 97.9 0.2775 98.2
λ1 0.1629 88.4 0.1763 98.2 0.1744 97.5
λ2 0.1815 88.6 0.1964 98.8 0.1944 98.1

II β 0.8062 91.3 0.2622 98.2 0.2578 98.2
λ1 0.1686 83.6 0.1699 96.9 0.1687 96.9
λ2 0.1874 82.4 0.1891 96.8 0.1873 96.8

III β 0.7795 89.5 0.2815 96.7 0.2772 96.7
λ1 0.1575 88.0 0.1558 96.8 0.1542 96.8
λ2 0.1751 83.7 0.1831 96.3 0.1815 96.3
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Table 7. AILs and CPs of the MLEs and Bayes estimates at (β, λ1, λ2) = (1, 0.2, 0.3) and
T2 = 1

n r T1 Scheme parameter
ACI HPD

SEL LINEX (c=1.5)
AIL CP AIL CP AIL CP

30 10 .7 I β 1.3328 89.6 0.2209 98.7 0.2183 98.7
λ1 0.2712 95.6 0.1204 98.5 0.1189 98.3
λ2 0.3277 96.3 0.1383 98.0 0.1370 98.0

II β 1.2113 90.0 0.2308 99.3 0.2283 99.4
λ1 0.2199 98.4 0.0868 98.5 0.0863 98.8
λ2 0.2609 97.3 0.0874 98.9 0.0878 98.8

III β 1.1088 89.3 0.2272 98.5 0.2237 98.5
λ1 0.1572 98.0 0.0757 97.0 0.0749 96.9
λ2 0.1853 97.8 0.0746 97.5 0.0738 97.3

30 20 .7 I β 1.0339 89.2 0.2289 97.9 0.2262 97.8
λ1 0.2315 85.7 0.1782 96.9 0.1761 96.8
λ2 0.2561 82.7 0.2018 97.8 0.1993 98.0

II β 1.0265 90.5 0.2462 97.9 0.2437 97.9
λ1 0.2458 90.0 0.1791 98.1 0.1771 98.2
λ2 0.2720 89.7 0.1907 98.9 0.1891 97.9

III β 1.0189 89.5 0.2389 97.7 0.2369 97.8
λ1 0.2526 92.2 0.1769 96.9 0.1749 96.9
λ2 0.2796 93.0 0.1933 98.8 0.1912 98.8

50 20 .7 I β 0.7233 90.4 0.2673 98.2 0.2639 98.2
λ1 0.1596 78.6 0.2009 96.3 0.1989 96.3
λ2 0.1760 76.5 0.2341 96.1 0.2318 96.1

II β 0.7332 90.6 0.2711 97.4 0.2678 97.4
λ1 0.1735 78.6 0.1962 96.8 0.1948 96.8
λ2 0.1905 76.6 0.2289 98.1 0.2270 98.1

III β 0.7085 90.1 0.2832 97.0 0.2801 97.1
λ1 0.1759 87.5 0.1890 97.7 0.1872 97.6
λ2 0.1945 85.4 0.2152 97.6 0.2134 97.7

50 30 .7 I β 0.7675 90.1 0.2930 97.3 0.2897 97.0
λ1 0.1906 84.5 0.1941 96.9 0.1923 96.5
λ2 0.2111 81.5 0.2178 98.4 0.2161 98.4

II β 0.7681 90.4 0.2799 97.8 0.2765 97.8
λ1 0.2041 92.4 0.1849 96.4 0.1832 96.4
λ2 0.2266 92.0 0.2079 98.0 0.2061 97.5

III β 0.7530 88.9 0.2949 97.0 0.2918 97.0
λ1 0.1819 94.6 0.1719 97.1 0.1703 97.1
λ2 0.2029 93.7 0.2007 97.7 0.1988 97.6
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Table 8. AILs and CPs of the MLEs and Bayes estimates at (β, λ1, λ2) = (1.5, 0.3, 0.5) and
T2 = 0.8

n r T1 Scheme parameter
ACI HPD

SEL LINEX (c=1.5)
AIL CP AIL CP AIL CP

30 10 .7 I β 1.5577 92.0 0.4475 97.9 0.4383 97.9
λ1 0.2881 99.0 0.1146 98.1 0.1124 98.2
λ2 0.3688 97.8 0.1112 99.3 0.1089 99.1

II β 1.3866 92.2 0.4501 97.7 0.4402 97.7
λ1 0.2088 92.2 0.0972 98.6 0.0959 98.5
λ2 0.2611 98.3 0.0989 98.7 0.0977 98.7

III β 1.2606 92.7 0.4596 98.3 0.4471 98.0
λ1 0.1661 99.8 0.0870 98.7 0.0854 98.6
λ2 0.2033 99.9 0.0874 98.2 0.0864 98.9

30 20 .7 I β 1.3711 90.0 0.4452 97.8 0.4358 97.8
λ1 0.3940 93.2 0.2155 98.2 0.2123 98.2
λ2 0.4517 91.1 0.2605 98.3 0.2565 98.7

II β 1.3364 90.1 0.4400 96.8 0.4310 97.7
λ1 0.3693 94.8 0.2143 96.8 0.2117 96.8
λ2 0.4242 94.9 0.2500 97.6 0.2461 97.6

III β 1.2838 89.8 0.4159 99.1 0.4093 9.0
λ1 0.3204 95.6 0.1962 97.7 0.1924 97.7
λ2 0.3674 94.5 0.2361 98.0 0.2331 98.1

50 20 .7 I β 1.1267 91.8 0.4728 98.0 0.4634 98.0
λ1 0.2353 97.8 0.1232 98.1 0.1215 98.0
λ2 0.2779 95.9 0.1524 97.9 0.1497 97.9

II β 1.0029 92.6 0.5039 97.6 0.4930 97.4
λ1 0.1739 99.4 0.0939 98.6 0.0932 98.4
λ2 0.2047 99.1 0.1080 98.6 0.1063 98.7

III β 0.9316 92.1 0.5206 98.2 0.5103 98.2
λ1 0.1423 99.7 0.0844 98.3 0.0835 98.4
λ2 0.1664 99.7 0.0934 99.5 0.0921 99.5

50 30 .7 I β 1.0340 92.2 0.4874 98.6 0.4796 98.6
λ1 0.2978 93.3 0.2404 97.2 0.2367 97.1
λ2 0.3393 91.8 0.2773 97.7 0.2741 97.7

II β 0.9997 91.0 0.4790 97.6 0.4709 97.8
λ1 0.2464 96.3 0.1908 98.4 0.1893 98.4
λ2 0.2817 93.3 0.2393 99.9 0.2361 99.9

III β 0.9528 90.3 0.4979 98.1 0.4887 97.3
λ1 0.2040 96.4 0.1430 97.8 0.1414 98.0
λ2 0.2342 94.5 0.1816 97.9 0.1790 97.9
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Table 9. AILs and CPs of the MLEs and Bayes estimates at (β, λ1, λ2) = (1.5, 0.3, 0.5) and
T2 = 1

n r T1 Scheme parameter
ACI HPD

SEL LINEX (c=1.5)
AIL CP AIL CP AIL CP

30 10 .7 I β 1.3328 89.6 0.2209 98.7 0.2183 98.7
λ1 0.2712 95.6 0.1204 98.5 0.1189 98.3
λ2 0.3277 96.3 0.1383 98.0 0.1370 98.0

II β 1.2113 90.0 0.2308 99.3 0.2283 99.4
λ1 0.2199 98.4 0.0868 98.5 0.0863 98.8
λ2 0.2609 97.3 0.0874 98.9 0.0878 98.8

III β 1.1088 89.3 0.2272 98.5 0.2237 98.5
λ1 0.1572 98.0 0.0757 97.0 0.0749 96.9
λ2 0.1853 97.8 0.0746 97.5 0.0738 97.3

30 20 .7 I β 1.0339 89.2 0.2289 97.9 0.2262 97.8
λ1 0.2315 85.7 0.1782 96.9 0.1761 96.8
λ2 0.2561 82.7 0.2018 97.8 0.1993 98.0

II β 1.0265 90.5 0.2462 97.9 0.2437 97.9
λ1 0.2458 90.0 0.1791 98.1 0.1771 98.2
λ2 0.2720 89.7 0.1907 98.9 0.1891 97.9

III β 1.0189 89.5 0.2389 97.7 0.2369 97.8
λ1 0.2526 92.2 0.1769 96.9 0.1749 96.9
λ2 0.2796 93.0 0.1933 98.8 0.1912 98.8

50 20 .7 I β 0.7233 90.4 0.2673 98.2 0.2639 98.2
λ1 0.1596 78.6 0.2009 96.3 0.1989 96.3
λ2 0.1760 76.5 0.2341 96.1 0.2318 96.1

II β 0.7332 90.6 0.2711 97.4 0.2678 97.4
λ1 0.1735 78.6 0.1962 96.8 0.1948 96.8
λ2 0.1905 76.6 0.2289 98.1 0.2270 98.1

III β 0.7085 90.1 0.2832 97.0 0.2801 97.1
λ1 0.1759 87.5 0.1890 97.7 0.1872 97.6
λ2 0.1945 85.4 0.2152 97.6 0.2134 97.7

50 30 .7 I β 0.7675 90.1 0.2930 97.3 0.2897 97.0
λ1 0.1906 84.5 0.1941 96.9 0.1923 96.5
λ2 0.2111 81.5 0.2178 98.4 0.2161 98.4

II β 0.7681 90.4 0.2799 97.8 0.2765 97.8
λ1 0.2041 92.4 0.1849 96.4 0.1832 96.4
λ2 0.2266 92.0 0.2079 98.0 0.2061 97.5

III β 0.7530 88.9 0.2949 97.0 0.2918 97.0
λ1 0.1819 94.6 0.1719 97.1 0.1703 97.1
λ2 0.2029 93.7 0.2007 97.7 0.1988 97.6
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Figure 3. Fitted the cdf and pdf of WD for data
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Table 10. Competing risks data.

cause1 0.011 0.035 0.049 0.170 0.329 0.381 0.708 0.958 1.062 1.594
2.327 2.451 2.565 2.694 2.702 2.761 3.059 6.367 13.403

cause 2 1.167 1.925 1.990 2.223 2.400 2.471 2.551 2.831 2.568 3.034
3.112 3.214 3.478 3.504 4.329 6.976 7.846

on considered real data, we obtain three groups of GPH type-II censored competing risks are generated
which are described as follows:
• case 1: T1 = 3, T2 = 4, j1 = 16, j2 = 9, R∗ = 12 and we have the following data: 0.011, 0.035,
0.049, 0.170, 0.329, 0.381, 0.708, 0.958, 1.062, 1.594,1.167, 1.925, 1.990, 2.223, 2.327 , 2.400, 2.451
,2.471,2.551, 2.568, 2.565, 2.694, 2.702, 2.761.
• case 2: T1 = 2, T2 = 3, j1 = 16, j2 = 8, R∗ = 12 and the data is 0.011, 0.035, 0.049, 0.170, 0.329,
0.381, 0.708, 0.958, 1.062, 1.594,1.167, 1.925, 1.990, 2.223, 2.327 , 2.400, 2.451 ,2.471,2.551, 2.568,
2.565, 2.694, 2.702, 2.761,2.831.
• case 3: T1 = 2, T2 = 2.5, j1 = 12, j2 = 6, R∗ = 12 and we have the following data: 0.011, 0.035,
0.049, 0.170, 0.329, 0.381, 0.708, 0.958, 1.062, 1.594,1.167, 1.925, 1.990, 2.223, 2.327 ,2.400, 2.451
,2.471.

Since there is no information about the unknown parameters, the non-informative priors (NIPs)
with a1 = b1 = a2 = b2 = a3 = b3 = 0 are adopted in this illustrative example. The MLEs and
BEs (with their standard errors) based on both case 1, 2 and 3 are calculated and reported in Table 11.
It is observed from this table that the point estimates obtained by maximum likelihood and Bayesian
methods of the unknown parameters β, λ1 and λ2 are quite close to each other. The results of Table
12 indicate that the HPDs are slightly shorter than the other confidence intervals. ACI: approximate
confidence interval.

Table 11. Point estimates of β, λ1 and λ2 for real data

case T1 T2 j1 j2 par
MLEs BEs

Estimate(sd.error) Estimate(sd.error)
1 3 4 16 9 β 1.148180 (0.199160) 1.198069 (0.197818)

λ1 0.361760 (0.106470) 0.331251 (0.090652)
λ2 0.103620 (0.038470) 0.080728 (0.024678)

2 2 3 16 8 β 1.260069 (0.213645) 1.201188 (0.221954)
λ1 0.585662 (0.166728) 0.513402 (0.162401)
λ2 0.112424 (0.043515) 0.097619 (0.031083)

3 2 2.5 12 6 β 0.856925 (0.179229) 0.831438 (0.184133)
λ1 0.321732 (0.100115) 0.297584 (0.085035)
λ2 0.090818 (0.038997) 0.074931 (0.032886)

7. Conclusions

In this paper, we considered making statistical inference for GPH type-II in presence of competing
risks. We obtained both point and interval estimates of the parameters using MLE and Bayesian ap-
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Table 12. interval estimates for MLEs and HPD credible interval for real data based on GPH
type-II censored

ACI HPD
case par lower upper AIL lower upper AIL
1 β 0.757829 1.538524 0.780695 0.828564 1.589844 0.761279

λ1 0.153074 0.570442 0.417368 0.163726 0.503012 0.339287
λ2 0.028221 0.179021 0.150800 0.039056 0.126305 0.087249

2 β 0.841331 1.678806 0.837474 0.887954 1.719689 0.831735
λ1 0.258881 0.912443 0.653562 0.225999 0.835509 0.609511
λ2 0.027135 0.197712 0.170576 0.022346 0.131416 0.109069

3 β 0.505644 1.208207 0.702563 0.489997 1.192697 0.702701
λ1 0.125509 0.517954 0.392445 0.155732 0.462009 0.306277
λ2 0.014384 0.167251 0.152867 0.026905 0.140539 0.113635

proaches when latent failure times follow Weibull distribution with the same shape and different scale
parameters. The performance of proposed methods are studied using simulations and we observed that
Bayes method provides better estimation results compared to the MLE method. Since the likelihood
function was obtained in complex form, the posterior density function was obtained in nonlinear form.
Therefore, using the MH algorithm, BEs and the associated HPD intervals were developed under the
assumption of independent Gamma priors. A real data is also discussed in support of the proposed
competing risks model. In most instances, the HPDs have shorter interval lengths than those of asso-
ciated ACIs. The performance of BEs relative to LINEX loss function have perform better than SEL
function. It has been observed that censoring Sc-III provides the smallest RMSE and AIL among three
censoring schemes In the literature, progressive hybrid type-II guarantees a specified number of fail-
ures, it might take a long time to observe r failures. As an extension of the current work is the inference
of unknown parameters based on data from GPH type-II in the presence of competing risks when la-
tent failure times follow Weibull distribution with different shape and common scale parameters. The
proposed results and methodologies aim to be beneficial to reliability practitioners and extend to other
censoring plans.
Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.
Funding: No Funding.
Author contributions: All authors have accepted responsibility for the entire content of this
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