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Abstract: The families of distributions are crucial in statistical modeling, offering a versatile foun-
dation for a variety of applications. The development of bivariate distributions with specific marginal
distributions and correlation coefficients is of considerable interest due to its wide-ranging relevance
in real-world situations. The range of correlation between variables is an important characterization of
the family. The variety of methods of construction of bivariate/multivariate distributions are developed
in the literature. The Cambanis family is an important class of multivariate distributions with a wide
range of correlation than the traditional families. In this paper, we consider a Cambanis-type bivari-
ate uniform distribution and develop key statistical properties of the Cambanis-type bivariate uniform
distribution. We obtain moment estimators of parameters for Cambanis-type bivariate uniform distri-
bution. To evaluate the performance of the estimators, we develop an algorithm to simulate samples
from the Cambanis-type bivariate uniform distribution and implement it in the R software. We perform
a simulation study to present the performance of moment estimator.
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1. Introduction

Statistical distributions serve as fundamental tools in modeling and understanding complex real-
world phenomena. In the context of modeling bivariate data, it can be advantageous to consider fam-
ilies of bivariate distributions that have specified marginal distributions, especially when prior infor-
mation is available in the form of these marginal distributions. Morgenstern [21] introduced a flexible
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family of distributions for such scenario. One noteworthy limitation of the Morgenstern family is that
it constrains the correlation coefficient to a relatively narrow range

(
−1

3 ,
1
3

)
. Consequently, distribu-

tions within the Morgenstern family are best suited for modeling data with low correlation between
variables. To overcome this limitation and expand the range of correlation between variables, vari-
ous modifications to the Morgenstern family have been proposed in the existing literature. Numerous
researchers, including Sarmanov [23], Cambanis [5], Huang and Kotz [14, 15], Bairamov et al. [4],
Bairamov and Kotz [3] and Veena and Thomas [26] have extended the Morgenstern family to enhance
the range of correlation between variables and provide more flexibility. In particular, Cambanis [5]
introduced a family of distributions that naturally generalizes the Morgenstern family.

Within the diverse landscape of statistical distributions, the Cambanis family stands out for its flex-
ibility and efficacy in capturing the underlying structures of correlated data. Bivariate distribution
belongs to Cambanis family excel in modeling scenarios where two variables are jointly distributed,
accounting for their interdependencies. This family not only broadens the scope of correlation among
variables but also extends into higher dimensions of association parameter space. Notably, Nair et al.
[22] have explored the distributional characteristics, nature of dependence, reliability properties, and
applications of the Cambanis family, showcasing its superiority in improving dependence coefficients
compared to the Morgenstern family. Koshti and Kamalja [19] obtained the estimator for scale param-
eter associated with study variable for Cambanis-type bivariate uniform distribution (CTBU) based on
different ranked set sampling schemes. Alawady et. al. [2] studied the concomitants of generalized
order statistics and dual generalized order statistics from Cambanis family of bivariate distributions
with nonzero parameter values. For some other developments for families of bivariate distributions,
see, Thomas and Scaria [25], Koshti [18], Kamalja and Koshti [17], Abd Elgawad et al. [1], Husseiny
et al. [16], El-Sherpieny et al. [8], Chacko and George [6], George and Chacko [11], Chesneau [7],
Koshti and Kamalja [20], Fayomi et al. [9, 10] and Haj et al. [12]. In this paper, we focus on a spe-
cific member of the Cambanis family, the CTBU distribution, and thoroughly investigate its statistical
properties. The structure of this paper is as follows:

Section 2 provides a comprehensive review of the Cambanis-type bivariate distribution and dis-
cusses some key distributional properties of CTBU distribution. In Section 3, we propose moment
estimators of the parameters of the CTBU distribution. Section 4 is dedicated to present the validation
of moment estimators through simulation studies. Finally, we conclude the paper in Section 5.

2. Distributional properties for CTBU distribution

In this section, we briefly discuss about the family of Cambanis-type bivariate distribution intro-
duced by Cambanis [5]. Further, we explore some distributional properties of CTBU distribution.

The distribution function (d f ) of Cambanis-type bivariate distribution corresponding to a bivariate
random variable (X,Y) with parameters α1, α2, α3 (CT B (α1, α2, α3)) as given by Cambanis [5] is,

HX,Y (x, y) = FX (x) FY (y) [1 + α1 {1 − FX (x)} + α2 {1 − FY (y)} + α3 {1 − FX (x)} {1 − FY (y)}],

where the parameters α1, α2 and α3 are real constants satisfying the following conditions.

1 + α1 + α2 + α3 ≥ 0, 1 + α1 − α2 − α3 ≥ 0,
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1 − α1 + α2 − α3 ≥ 0, 1 − α1 − α2 + α3 ≥ 0.

The Cambanis family for bivariate distributions reduces to the Morgenstern family when both α1 and
α2 are zero. Further the two variables are independent when αi = 0 for i = 1, 2, 3. The spearman’s cor-
relation for CT B (α1, α2, α3) distribution given by Nair et al. [22] is ρ = α3−α1α2

3 while for Morgenstern
family (i.e. CT B (0, 0, α3) is ρ = α3

3 .

We consider a CTBU distribution with parameters (α1, α2, α3, θ1, θ2) and denote it as
CT BU (α1, α2, α3, θ1, θ2) . The d f of CT BU (α1, α2, α3, θ1, θ2) distribution is,

HX,Y (x, y) =
xy
θ1θ2

[
1 + α1

(
1 −

x
θ1

)
+ α2

(
1 −

y
θ2

)
+ α3

(
1 −

x
θ1

) (
1 −

y
θ2

)]
;0 < x < θ1, 0 < y < θ2, θ1, θ2 > 0,

where α′s are real constants satisfying,

1 + α1 + α2 + α3 ≥ 0, 1 + α1 − α2 − α3 ≥ 0,

1 − α1 + α2 − α3 ≥ 0, 1 − α1 − α2 + α3 ≥ 0.

Here FX (x) and FY (y) are d f ′s of U (0, θ1) and U (0, θ2) respectively. Note that the marginal d f of
X and Y are HX (x) and HY (y) and not FX (x) and FY (y) respectively. The d f of X and Y are given by,

HX (x) =
x
θ1

(
1 + α1

(
1 −

x
θ1

))
; 0 < x < θ1,

and

HY (Y) =
y
θ2

(
1 + α2

(
1 −

y
θ2

))
; 0 < y < θ2.

The pd f of CT BU (α1, α2, α3, θ1, θ2) distribution corresponding to d f HX,Y (x, y) is given by,

h (x, y) =
1
θ1θ2

[
1 + α1

(
1 −

2x
θ1

)
+ α2

(
1 −

2y
θ2

)
+ α3

(
1 −

2x
θ1

) (
1 −

2y
θ2

)]
; 0 < x < θ1, 0 < y < θ2, θ1, θ2 > 0.

(2.1)
Figures 1, 2 and 3 shows the 3-dimensional plots of the joint pd f of CTBU distribution with

(α1, α2, α3, θ1, θ2) = (0, 0, 0, 1, 1) , (α1, α2, α3, θ1, θ2) = (0.1, 0.3, 0.2, 1, 1) and (α1, α2, α3, θ1, θ2) =
(0.1, 0.3,−0.2, 1, 1) respectively.

Observe that the joint density of CT BU (0, 0, 0, 1, 1) distribution in Figure 1 represents a
horizontal plane in a 3-dimensional space. While the pd f of CT BU (0.1, 0.3, 0.2, 1, 1) and
CT BU (0.1, 0.3,−0.2, 1, 1) in Figure 2 and 3 is represented by inclined planes respectively.

The marginal pd f of X and Y are as follows:

hx (x) =
1
θ1
+
α1

θ1

(
1 −

2x
θ1

)
; 0 < x < θ1,

and

hY (y) =
1
θ2
+
α2

θ2

(
1 −

2y
θ2

)
; 0 < y < θ2.
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Figure 1. Joint pd f plot for CT BU (0, 0, 0, 1, 1) distribution

Figure 2. Joint pd f plot for CT BU (0.1, 0.3, 0.2, 1, 1) distribution
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Figure 3. Joint pd f plot for CT BU (0.1, 0.3,−0.2, 1, 1) distribution

Figure 4. Plots of pd f of X for α1 = −0.2 (left panel) and α1 = 0.2 (right panel)

Figure 5. Plots of d f of X for α1 = −0.2 (left panel) and α1 = 0.2 (right panel)
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Observe that the marginal distribution of X and Y is not uniform. Figures 4 and 5 shows the plots
of pd f and corresponding d f of marginal distribution of X for CTBU distribution for θ = 1, 1.5 and 2
when α1 = −0.2 and 0.2 respectively.

The marginal pd f of X for CTBU distribution for θ1 = 1, 1.5 and 2 when α1 = −0.2 and 0.2 are
presented in Figure 4 and forms a trapezoid which can be seen as a generalization of a rectangular
shape of general uniform distribution. Observe that the trapezoidal pd f ′s of X have exactly opposite
inclinations when α1 > 0 and α1 < 0. Further, it can be seen that as θ1 increases, the height of the
trapezoidal pdf decreases. Figure 5 shows the df of X for CTBU distribution for α1 = −0.2 and 0.2.

The sth moment of X is given by,

E (Xs) =
θs

1

(s + 1)

(
1 −

sα1

s + 2

)
.

Hence,

E (X) =
θ1
2

(
1 −
α1

3

)
, E

(
X2

)
=
θ21
3

(
1 −
α1

2

)
.

The variance of X is,

V (X) =
θ21
12

(
1 −
α2

1

3

)
.

Further, the bivariate (r, s)th product moment of the distribution in (2.1) is given by,

E (XrY s) =
θr1θ

s
2

(r + 1)(s + 1)

[
1 −

rα1

r + 2
−

sα2

s + 2
+

rsα3

(r + 2) (s + 2)

]
; r, s = 1, 2, 3, . . .

To obtain covariance between X and Y , we use the Hoeffding’s formula (Hoeffding [13]) as,

Cov (X,Y) =
∫∫ [

HX,Y (x, y) − HX (x) HY (y)
]
dxdy.

The Cov (X,Y) for CT BU (α1, α2, α3, θ1, θ2) distribution is given by,

Cov (X,Y) =
(
α3 − α1α2

36

)
θ1θ2.

Hence the correlation coefficient (ρ) between X and Y is given by,

ρ =
(α3 − α1α2)√(
3 − α2

1

)
(3 − α2

2)
.

The variation in correlation with respect to α2, α3 for CT BU (α1, α2, α3, θ1, θ2) distribution is shown
in Figures 6, 7 and 8 for α1 = −0.8, 0.8 and α1 = 0 respectively. These figures, help to observe the
marginal and joint effects of α2 and α3 on ρ for given α1.

Further, observe that ρ is monotonic with respect to α2 and α3 when α1 < 0 while for α1 > 0, the
correlation coefficient has exactly opposite behaviour with respect to α2 and α3. Further these graphs
will also help to choose the feasible α-parameters and gives an idea about the correlation between the
variables.
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Figure 6. Variation in ρ with respect to α2, α3 for CT BU (α1 = −0.8, α2, α3, θ1, θ2)

Figure 7. Variation in ρ with respect to α2, α3 for CT BU (α1 = 0.8, α2, α3, θ1, θ2)

Figure 8. Variation in ρ with respect to α2, α3 for CT BU (0, α2, α3, θ1, θ2)
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3. Moment estimation of parameters of CTBU distribution

Moment estimation is the simplest approach to estimate the parameters of a given probability distri-
bution. In this section, we focus on the problem of estimation of parameters for the CTBU distribution
using the method of moments.

Let (xi, yi) , i = 1, 2, . . . , n be the simple random sample from CT BU (α1, α2, α3, θ1, θ2) distribution.
Let m′1 and m′2 be the first and second sample moments respectively based on X-observations and ρ̂
be the sample correlation. The steps to obtain moment estimators of α1, α2, α3, θ1, θ2 are described
systematically in the following.

I. To obtain moment estimator of α1, we consider ratio of sample moments which lead to following
moment equation.

4
(
1 − α1

2

)
3
(
1 − α1

3

)2 =
m′2
m′1

2 ,

This leads to the following quadratic moment equation in α1.

m′2
3
α2

1 + 2
(
m′1

2
− m′2

)
α1 +

(
3m′2 − 4m′1

2
)
= 0. (3.1)

Among two solutions of (3.1), let α̂1 be the feasible one. Using similar moment equation based on
moments of Y-observations the moment estimator α̂2 of α2 can be obtained.

II. To obtain moment estimator of α3, we use the moment equation based on correlation between
(X,Y) and replace α1 and α2 by their respective moment estimates α̂1 and α̂2.

ρ̂ =
α3 − α̂1α̂2√(

3 − α̂2
1

) (
3 − α̂2

2

) ,
The moment estimator α̂3 of α3 along with feasibility condition is given by,

α̂3 =


max (−1 − α̂1 − α̂2, −1 + α̂1 + α̂2) ; if ρ̂ < a

ρ̂
√(

3 − α̂2
1

) (
3 − α̂2

2

)
+ α̂1α̂2 ; if a ≤ ρ̂ ≤ b

min (1 + α̂1 − α̂2, 1 − α̂1 + α̂2) ; if ρ̂ > b

,

where a = max(−1−α̂1−α̂2, −1+α̂1+α̂2)−α̂1α̂2√
(3−α̂2

1)(3−α̂2
2)

and

b =
min (1 + α̂1 − α̂2, 1 − α̂1 + α̂2) − α̂1α̂2√(

3 − α̂2
1

) (
3 − α̂2

2

) .

Note that if α1 = 0 and α2 = 0 (i.e. (X,Y) ∼ MT BU(α3, θ1, θ2)), the above moment estimator of α3

reduces to estimator given by Tahmasebi and Jafari [24] and is given as follows.

α̂3 =


−1 ; if ρ̂ < −1

3
3ρ̂ ; if − 1

3 ≤ ρ̂ ≤
1
3

1 ; if ρ̂ > 1
3

.
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Table 1. Sample and population quantities associated with the simulated data

Population quantities Sample Quantities n = 500 n = 1000
CT BU (0.1, 0.1, 0.8, 1, 1)

E (X) 0.4833 X 0.4769 0.4791
E (Y) 0.4833 Y 0.4208 0.4174

Var (X) 0.0831 S 2
X 0.0797 0.0800

Var (Y) 0.0831 S 2
Y 0.0775 0.0761

ρ 0.2642 r 0.1371 0.1668
CT BU (−0.2, −0.1,−0.6, 1, 1.5)

E (X) 0.5333 X 0.5376 0.5588
E (Y) 0.7750 Y 0.8638 0.8869

Var (X) 0.0822 S 2
X 0.0872 0.0657

Var (Y) 0.1869 S 2
Y 0.1807 0.1694

ρ -0.2084 r -0.1306 -0.2669

III. The moment estimator θ̂1 and θ̂2 of θ1 and θ2 respectively are obtained as,

θ̂1 =
2X(

1 − α̂1
3

) , θ̂2 = 2Y(
1 − α̂2

3

) .
The moment estimators of α1, α2, α3, θ1, θ2 can also be used as the initial guess values of the re-

spective parameters while obtaining maximum likelihood estimators.

4. Simulation from CTBU (α1, α2,α3, θ1, θ2) distribution

Koshti and Kamalja [19] developed a Matlab function for simulating random pairs of observations
from the CT BU(α1, α2, α3, θ1, θ2) distribution when α1 is set to 0. Following their approach, we have
developed a R function, rctbu(α1, α2, α3, θ1, θ2, n), to generate random samples of size n from the
CT BU(α1, α2, α3, θ1, θ2) distribution. The R code of rctbu(α!, α2, α3, θ1, θ2, n) function to simulate
data from CT BU(α1, α2, α3, θ1, θ2) distribution is given in Appendix. To assess the validity of the
data generated by the rctbu() function, we have conducted simulations using sample sizes of 500 and
1000. Subsequently, we have compared various sample statistics with their corresponding population
values. The results are summarized in Table 1.

The Figure 9 shows sample mean of X when (X,Y) ∼ CT BU (0.1, 0.1, 0.8, 1, 1) distribution across
different sample sizes. It is evident from the plot that the sample mean of X-variable approaches to the
population mean (highlighted by red line) as the sample size increases.

We use the rctbu(α1, α2, α3, θ1, θ2, n) function to generate random samples from the
CT BU(α1, α2, α3, θ1, θ2) distribution, with the aim of assessing the feasibility of moment estimates
for α1, α2, α3, θ1, and θ2. The moment estimates for all parameters of the CT BU(α1, α2, α3, θ1, θ2)
distribution, as proposed in Section 3, have been computed for different sample sizes, using specific
values of α1, α2, α3, θ1, and θ2. The outcomes are summarized in Table 2.
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Figure 9. Sample mean of X across different sample sizes for CT BU (0.1, 0.1, 0.8, 1, 1)

Table 2. Moment estimates based on simulated data for CT BU (α1, α2, α3, θ1, θ2) distribu-
tion

Population parameter values Moment estimates of parameters
n α1 α2 α3 θ1 θ2 α̂1 α̂2 α̂3 θ̂1 θ̂2

50 0.1 0.1 0.8 1 1 0.1286 0.1978 0.3952 0.8526 0.9216
75 0.1 0.1 0.8 1 1 0.1311 0.1308 0.4878 1.0800 0.9076

From Table 2, it is evident that the moment estimators are imprecise but tend to provide estimates
that approximate the true values. The estimators show a reasonable level of accuracy, though there
may be slight deviations.

5. Conclusions

In this paper, we study the Cambanis-type bivariate uniform (CTBU) distribution, as an important
member of the Cambanis family. This paper has explored its statistical properties, moment estimation,
and the validation of moment estimators through simulation studies. The obtained moment estimators
can be used as estimates or can be serve as an initial solution for obtaining maximum likelihood esti-
mate for the parameters. We have designed a simulation algorithm to generate samples from the CTBU
distribution and implemented in R programming language.
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Appendix: The R function ′rctbu(α1, α2, α3, θ1, θ2, n)′ to generate random sample of size n from
CT BU(α1, α2, α3, θ1, θ2) distribution.

rctbug <- function(a1, a2, a3, t1, t2, n) {
# DF of X
F1 <- function(x) (1 + a1 * (1 - x / t1)) * x / t1
# DF of Y
F2 <- function(y) (1 + a2 * (1 - y / t2)) * y / t2
# DF of (X,Y)
F12 <- function(x, y) (x * y) * (1 + a1 * (1 - x / t1) +
a2 * (1 - y/t2) + a3 * (1 - x / t1) * (1 - y / t2)) / (t1 * t2)
# DF of conditional distribution of Y|X=x
F2 1 <- function(y, x) F12(x, y) / F1(x)
# Simulation using F(y|x)
sF1 <- runif(n)
sF2 1 <- runif(n)
u <- numeric(n)
v <- numeric(n)
for (i in 1:n) {
uu <- uniroot(function(x) F1(x) - sF1[i], interval = c(0, t1))$root
u[i] <- uu
vv <- uniroot(function(y) F2 1(y, uu) - sF2 1[i], interval = c(0,
t2))$root
v[i] <- vv }
z <- cbind(u, v)
return(z)
}

# Example
set.seed(123)
z <- rctbug(-0.2, -0.1, -0.6, 1, 1.5, 100)
# Computes the sample and population means, variances and correlation
z p.mean=c(t1*(1-a1/3)/2, t2*(1-a2/3)/2)
z s.var=apply(z,2,var)
z p.var=c(t1*t1*(1-a1*a1/3)/12, t2*t2*(1-a2*a2/3)/12)
s.corr=cor(z)
z s.corr=s.corr[1,2]
z p.corr=(a3-a1*a2)/sqrt((3-a1*a1)*(3-a2*a2))
round(c(z s.mean,z p.mean,z s.var,z p.var,z s.corr,z p.corr),4)
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