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Abstract: Real-life sciences rely heavily on statistical modeling because new applications and phe-
nomena pop up constantly, increasing the demand for new distributions. In this article, the exponen-
tiated generalized Weibull exponential (EGWE) distribution is proposed and studied. The density can
exhibit decreasing, increasing, right-skewed, and left-skewed shapes. The hazard rate function shows
decreasing, J-shaped, bathtub, and upside-down bathtub shapes. Statistical properties such as asymp-
totic behavior, quantile function, moment and incomplete moments, mean and median deviations, in-
equality measures, moment generating function, and order statistics are studied. The estimation of
the parameters of the EGWE distribution using six frequentist estimation methods, namely maximum
likelihood, least squares, maximum product of spacing, weighted least squares, Anderson-Darling,
and Cramér-von Mises are discussed. Monte Carlo simulation study to ascertain the behavior of the
estimators in terms of average absolute biases and mean square error is carried out. All the estima-
tors performed very well since the average absolute biases and mean square errors decrease as the
sample size increases. The usefulness of the EGWE distribution is illustrated with two datasets. The
results show that the EGWE distribution provides better parametric fit compared with the competing
distributions.
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1. Introduction

In fitting data to actual phenomena, statistical distributions are essential. They are frequently used
to model and analyze data across variety of fields, including engineering, biology, economics, finance,
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and the life sciences. Despite the fact that numerous distributions have been developed and studied,
there is always room to develop or propose distributions that are either more flexible or that better fit
particular real-world phenomena. However, some data may display complex pattern which may not be
adequately modeled using the classical and traditional distributions. This complexity in data patterns
has led to the need to develop statistical distributions that are more flexible, practical, and accurate in
modeling them in the literature.
One of the numerous uses for the well-known continuous probability model known as the exponential
distribution is life testing. The beta exponential distribution (Nadarajah and Kotz, [1]), exponenti-
ated exponential distribution (Gupta and Kundu, [2]), generalized exponential distribution (Gupta and
Kundu, [3]), Kumaraswamy exponential distribution (Cordeiro and Castro, [4]), and inverse exponen-
tial distribution (Keller et al. [5]) are all examples of attempts to increase the flexibility of the exponen-
tial distribution. Also, the idea of exponentiated distributions were utilized to create new distributions.
Cordeiro and Castro [4] extended many known distributions as normal, Weibull, gamma, Gumbel, and
inverse Gaussian distributions. They expressed the ordinary moments of these new family of general-
ized distributions as linear functions of probability weighted moments of the parent distribution.
Also, one of the life-time distributions that is most frequently utilized in reliability and lifetime data
analysis is the Weibull distribution. The associated hazard rate function can be increasing, constant, or
decreasing, hence not adaptable in modeling non-monotonic failure time data. However, hazard rate
function can have a bathtub form in many applications in reliability and survival analysis. See Lai and
Xie [6] and Bebbington et al. [7] for more information on how the hazard rate function is essential to
the work of reliability engineers.
Cordeiro et al. [8] proposed the exponentiated generalized (EG) class of distributions with cumulative
distribution function (CDF) and probability density function (PDF) given by Equations (1.1) and (1.2)

F(x) = [1 − {1 −G(x)}α]β, α > 0, β > 0, x ∈ R. (1.1)

f (x) = αβg(x) {1 −G(x)}α−1 [1 − {1 −G(x)}α]β, x ∈ R, (1.2)

where α > 0 and β > 0 are shape parameters. They proposed the exponentiated generalized Fréchet
(EGF), exponentiated generalized normal (EGN), exponentiated generalized Gamma (EGGa), and ex-
ponentiated generalized Gumbel (EGGu) distributions as special cases. According to Cordeiro et al.
[8], even if the baseline PDF, g(x) is a symmetric distribution, the resulting distribution in Equation
(1.2) will not be a symmetric distribution since the two shape parameters can control the tail weights
and possibly add entropy to the center of the exponentiated generalized class of distributions.
Other extensions of this class of distributions can be found in Elbatal and Muhammed [9] and Ogun-
tunde et al. [10] proposing the exponentiated generalized inverse Weibull (EGIW) and exponentiated
generalized inverted exponential (EGIE) distributions respectively. Aslo, Oguntunde et al. [11] in-
troduce the exponentiated generalized Weibull (EGW) distribution. Reyad et al. [12] used the EG
class of distributions by Cordeiro et al. [8] in extending the Topp Leone-G by Al-Shomrani et al.
[13]. They proposed the exponentiated generalized Topp-Leone-G family (EGTL-G). Elsherpienyi
and Almetwally [15] proposed and studied the exponentiated generalized alpha power exponential
(EGAPEx) distribution. The hazard rate exhibits L-shaped, increasing, decreasing, and upside-down
bathtub shaped. The EGAPEx includes the exponential, alpha power exponential, alpha power gener-
alized exponential, generalized exponential, standardized exponential, and exponentiated generalized
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exponential distributions as special cases. The parameter(s) estimation of the Weibull generalized ex-
ponential distribution (WGED) based on the adaptive Type-II progressive (ATIIP) censored sample
was investigated by Almongy et al. [14]. It was evident that the Bayesian estimation was better and
more efficient than the maximum likelihood estimation (MLE) and maximum product spacing (MPS)
estimation according to the mean square error (MSE). Also, El-Morshedy et al. [16] introduced a new
4-parameter exponentiated generalized inverse flexible Weibull (EGIFW) distribution. They estimated
the model parameters via several methods namely; maximum likelihood, maximum product of spac-
ing, and Bayesian. For more recently papers see [17, 18].
Moreover, Bilal et al. [19] introduced a new Weibull class of distributions with CDF and PDF given
by Equation (1.3) and Equation (1.4)

G(x) = 1 − e−
[
− log[1−K(x)]a

c

]d

a > 0, c > 0, d > 0, x ∈ R. (1.3)

g(x) = a
(
d
c

) [
− log[1 − K(x)]a

c

]d−1 k(x)
1 − K(x)

e−
[
− log[1−K(x)]a

c

]d

, x ∈ R. (1.4)

They proposed the Weibull exponential (WE) distribution as a special case. The CDF and PDF of the
WE distribution is given by

G(x) = 1 − e−(
abx

c )d

, x > 0, a, b, c, d > 0 (1.5)

and

g(x) = d
(
ab
c

)d

xd−1e−(
abx

c )d

, x > 0 (1.6)

respectively.
From these concepts, this paper combine the works of Cordeiro et al. [8] and Bilal et al. [19] to a pro-
posed new distribution known as exponentiated generalized Weibull exponential (EGWE) distribution.
This is a generalization of the WE distribution by Bilal et al. [19]. To the best of our knowledge this
is an attempt to generalized WE distribution by Bilal et al. [19]. We demonstrate the usefulness and
flexibility of the EGWE distribution in comparison to other distributions.
The rest of the paper is organized as follows: Section 2 presents the EGWE distribution. The statis-
tical properties of the distribution is presented in Section 3. In Section 4, six estimation methods are
presented. Monte Carlo simulations are carried out in Section 5. In Section 6, the applications of the
EGWE distribution is illustrated using two real life datasets and the conclusion is presented in Section
7.

2. The Exponentiated Generalized Weibull Exponential Distribution

In this section, we propose the exponentiated generalized Weibull exponential (EGWE) distribution.
The CDF of the proposed distribution is obtained by substituting Equation (1.5) into Equation (1.1).
Therefore, a random variable X is said to follow the EGWE distribution if the CDF is given by

F(x) =
[
1 − e−α(

abx
c )d

]β
, x > 0, a, b, c, d, α, β > 0. (2.1)
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The related PDF is given by

f (x) = αβd
(
ab
c

)d

xd−1e−α(
abx

c )d
[
1 − e−α(

abx
c )d

]β−1
, x > 0. (2.2)

The hazard rate function is given by

h(x) =
αβd

(
ab
c

)d
xd−1e−α(

abx
c )d

[
1 − e−α(

abx
c )d

]β−1

1 −
[
1 − e−α(

abx
c )d

]β . (2.3)

The density plots of the EGWE in Figure 1 show decreasing, increasing, right skewed, and left
skewed shapes.

Figure 1. Plots of the density of the EGWE distribution
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Figure 2 shows the hazard rate plots of the EGWE. From the plots, there is decreasing, J-shaped,
bathtub and upside-down bathtub shapes.

Figure 2. Plots of the hazard rate function of the EGWE distribution

2.1. Sub-models

The EGWE distribution consists of a number of vital sub-models that are widely used in model-
ing. These includes: Weibull exponential (WE) distribution (Bilal et al. [19]), exponential Weibull
(EW) distribution (Pal et al. [20]), generalized Weibull (GW) distribution (Mudholkar and Srivas-
tava, [21]), exponential (E) distribution, Weibull (W) distribution, Rayleigh distribution, exponentiated
exponential Weibull (EEWD) distribution (Al-Sulami, [22]), and exponentiated generalized Weibull
(EGWeibull) distribution (Oguntunde et al. [11]) . These are displayed in Table 1.

Table 1. Sub-models from the EGWE distribution

Distribution α β a b c d
Rayleigh 1 1 a b c 2
EEWD α β 1 1 c d
EGWeibull 1 β 1 1 c d
WE 1 1 a b c d
EW 1 β a 1 1 d
GW 1 β 1 b 1 d
W 1 1 1 1 c d
E 1 1 1 1 c 1
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2.2. Useful Expansions

In deriving the statistical properties of the EGWE distribution, it is essential that the expansion of
the density be obtained.
Using the generalized binomial expansion of the form; (1 − t)n =

∑∞
j=0(−1)n

(
n
j

)
t j, |t| ≤ 1,[

1 − e−α(
abx

c )d
]β−1
=

∞∑
j=0

(−1) j

(
β − 1

j

)
e− jα( abx

c )d

. (2.4)

Equation (2.4) can be rewritten as[
1 − e−α(

abx
c )d

]β−1
=

∞∑
j=0

(−1) jΓ(β)
j!Γ(β − j)

e− jα( abx
c )d

. (2.5)

Substituting Equation (2.5) into Equation (2.2), we have

f (x) = αβd
(
ab
c

)d ∞∑
j=0

(−1) jΓ(β)
j!Γ(β − j)

xd−1e−α(
ab
c )d

(1+ j)xd

letting Ψ j =
(−1) jΓ(β)
j!Γ(β− j) , we obtain the expansion of the PDF of the EGWE distribution as

f (x) = αβd
(
ab
c

)d ∞∑
j=0

Ψ jxd−1e−α(
ab
c )d

(1+ j)xd
. (2.6)

3. Statistical Properties

In this section, some statistical properties of the EGWE distribution are studied.

3.1. Asymptotic Behavior

The behavior of the CDF of the EGWE distribution is investigated as x→ 0 and as x→ ∞.
As x→ 0;

lim
x→0

F(x) = lim
x→0

[[
1 − e−α(

abx
c )d

]β]
= 0.

As x→ ∞;

lim
x→∞

F(x) = lim
x→∞

[[
1 − e−α(

abx
c )d

]β]
= 1.

In like manner, the behavior of the PDF of the EGWE distribution is investigated as x → 0 and as
x→ ∞.
As x→ 0;

lim
x→0

f (x) = lim
x→0

αβd (
ab
c

)d

xd−1e−α(
abx

c )d
[
1 − e−α(

abx
c )d

]β−1
 = 0.

As x→ ∞;

lim
x→∞

f (x) = lim
x→∞

αβd (
ab
c

)d

xd−1e−α(
abx

c )d
[
1 − e−α(

abx
c )d

]β−1
 = 0.

Computational Journal of Mathematical and Statistical Sciences Volume 3, Issue 1, 57–84



63

3.2. Quantile Function

To obtain the quantile function of the EGWE distribution, one has to determine the inverse of the
CDF of the EGWE distribution, which is used in obtaining randomly generated datasets from the
EGWE distribution. Thus, the quantile function of the EGWE distribution for u ∈ (0, 1) is given by

xu =
c
αab

[
− log

(
1 − u1/β

)]1/d
. (3.1)

3.3. Moments and Incomplete moments

The moments of a distribution is important in estimating measures of variation like the variance,
standard deviation, coefficient of variation, mean deviation, median deviation, kurtosis, skewness
amongst others.
The rth non-central moment by defintion is given by

µ
′

r =

∫ ∞

0
xr f (x)dx.

This implies that,

µ
′

r = αβd
(
ab
c

)d ∞∑
j=0

Ψ j

∫ ∞

0
xr xd−1e−α(

ab
c )d

(1+ j)xd
dx.

Letting y = α
(

ab
c

)d
(1 + j)xd, implies that, if x → 0, y → 0, and if x → ∞, y → ∞. Also, dx =

dy

αd( ab
c )d

(i+ j)xd−1
and x =

[
y

α( ab
c )d

(1+ j)

]1/d

. Using the identity; Γ(s) =
∫ ∞

0
ys−1e−ydy and after some algebra,

we get

µ
′

r =
β

αr/d(ab/c)r

∞∑
j=0

Ψ j(1 + j)−(r/d+1)Γ(1 + r/d), r > d, (3.2)

where r = 1, 2, ....
The incomplete moments are vital when estimating measures of inequality like the Bonferroni and
Lorenz curves, and measures of deviation such as mean and median deviations.
By definition, the rth incomplete moment is given by

Mr(x) =
∫ x

0
yr f (y)dy.

Using the concept in proofing the moments and the lower incomplete gamma function; Γ(w, s) =∫ s

0
yw−1e−ydy, we get

Mr(x) =
β

αr/d(ab/c)r

∞∑
j=0

Ψ j(1 + j)−(r/d+1)Γ(1 + r/d, α(ab/c)d(1 + j)xd), r > d, c , 0. (3.3)
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3.4. Mean and Median Deviations

The totality of the deviations from the mean and median can be used to estimate the variation
in a population with some certainty. By definition, the mean deviation is given as ν1 = 2µF(µ) −
2
∫ µ

0
x f (x)dx, where

∫ µ
0

x f (x)dx is simplified using the first incomplete moment. Therefore, the mean
deviation of the EGWE distribution is given by

ν1 = 2µF(µ) −
2β

α1/d(ab/c)

∞∑
j=0

Ψ j(1 + j)−(1/d+1)Γ(1 + 1/d, α(ab/c)d(1 + j)xd), d > 1, c , 0, (3.4)

where µ = µ1 is the mean of X.
Also, the median deviation is defined as ν2 = µ − 2

∫ M

0
x f (x)dx. Thus, the median deviation of the

EGWE distribution is given by

ν2 = µ −
2β

α1/d(ab/c)

∞∑
j=0

Ψ j(1 + j)−(1/d+1)Γ(1 + 1/d, ϕ), d > 1, (3.5)

where ϕ = α(ab/c)d(1 + j)Md.

3.5. Inequality Measures

The Lorenz and Bonferroni curves are frequently used to assess the level of economic inequality in
a population. The Bonferroni curve, BF(x), is the scaled conditional mean curve, which is the ratio of
the group mean income of the population. The Lorenz curve, LF(x), indicates the proportion of total
income volume accumulated by those units with income lower than or equal to volume x.
The Bonferroni curve, BF(x) and the Lorenz curve, LF(x) of the EGWE distribution is by Equations
(3.6) and (3.7) respectively.

BF(x) =
β

(ab/c)α1/dµF(x)

∞∑
j=0

Ψ j(1 + j)−(1/d+1)Γ(1 + 1/d, α(ab/c)d(1 + j)xd). (3.6)

LF(x) =
β

(ab/c)α1/dµ

∞∑
j=0

Ψ j(1 + j)−(1/d+1)Γ(1 + 1/d, α(ab/c)d(1 + j)xd). (3.7)

3.6. Moment Generating Function

The moment generating function (MGF) of a random variable X by definition is given as, Mx(z) =
E(ezx), if it exists. Using Taylor series; Mx(z) =

∑∞
r=0

zr

r!µ
,
r. Therefore, the MGF of the EGWE distribu-

tion is given by

Mx(z) =
∞∑

r=0

zrβ

r!αr/d(ab/c)r

∞∑
j=0

Ψ j(1 + j)−(r/d+1)Γ(1 + r/d) (3.8)
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3.7. Order Statistics

Let X1, X2, . . . , Xn be a sample of size n from the EGWE distribution and X1:n ≤ X2:n ≤ . . . ≤ Xn:n

denote the order statistics of the sample.
The PDF of the first-order statistics is defined as

f1:n(x) = n[1 − F(x)]n−1 f (x). (3.9)

Substituting the CDF and PDF of the EGWE distribution into Equation (3.9), we get

f1:n(x) = nαβd
(
ab
c

)d [
1 −

[
1 − e−α(

abx
c )d

]β]n−1

xd−1e−α(
abx

c )d
[
1 − e−α(

abx
c )d

]β−1
. (3.10)

Also, the PDF of the nth order statistics is defined as

fn:n(x) = n[F(x)]n−1 f (x). (3.11)

Therefore, substituting the CDF and PDF of the EGWE distribution in Equation (3.11), we get the PDF
of the nth order statistics as

fn:n(x) = nαβd
(
ab
c

)d [[
1 − e−α(

abx
c )d

]β]n−1

xd−1e−α(
abx

c )d
[
1 − e−α(

abx
c )d

]β−1
. (3.12)

4. Estimation Methods

This section discusses the estimation of the EGWE parameters via six estimation approaches.
These are the maximum likelihood, maximum product of space, least squares, weighted least squares,
Anderson-Darling, and Cramér-von Mises methods.

4.1. Maximum Likelihood Estimation

The maximum likelihood estimators (MLEs) of the EGWE parameters are discussed. Let
X1, X2, ..., Xn be n random sample from the EGWE distribution and Θ = (α, β, a, b, c, d)T , then the
log-likelihood function ℓ = ℓ(Θ) is given by

ℓ =n log
(
αβd(ab/c)d

)
+ (d − 1)

n∑
i=1

log(xi) − α(ab/c)d
n∑

i=1

xd
i

+ (β − 1)
n∑

i=1

log
(
1 − e−α

(
abxi

c

)d)
. (4.1)

By maximizing the total likelihood function with respect to the parameters α̂, β̂, â, b̂, ĉ, and d̂, the
ML estimates of the parameters can be obtained. Nevertheless, when the log-likelihood function in
Equation (4.1) is differentiated with respect to each parameter the score functions are obtained as

∂ℓ

∂α
=

n
α
−

(
ab
c

)d n∑
i=1

xd
i + (β − 1)

n∑
i=1

eα
(

abxi
c

)d [(
abxi

c

)d
− e−α

(
abxi

c

)d (
eα

(
abxi

c

)d

− 1
) (

abxi
c

)d
]

(
eα

(
abxi

c

)d

− 1
) , (4.2)
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∂ℓ

∂β
=

n
β
+

n∑
i=1

log
[
e−α

(
abxi

c

)d (
eα

(
abxi

c

)d

− 1
)]
, (4.3)

∂ℓ

∂a
=

nd
a
−
αbd

(
ab
c

)d−1

c

n∑
i=1

xd
i + (β − 1)

n∑
i=1

eα
(

abxi
c

)d

×


bdxi(abxi/c)d − bde−α

(
abxi

c

)d (
eα

(
abxi

c

)d

− 1
)
αxi(abxi/c)d−1

c
(
eα

(
abxi

c

)d

− 1
)

 , (4.4)

∂ℓ

∂b
=

nd
b
−
αad

(
ab
c

)d−1

c

n∑
i=1

xd
i + (β − 1)

n∑
i=1

eα
(

abxi
c

)d

×


αadxi(abxi/c)d − ade−α

(
abxi

c

)d (
eα

(
abxi

c

)d

− 1
)
αxi(abxi/c)d−1

c
(
eα

(
abxi

c

)d

− 1
)

 , (4.5)

∂ℓ

∂c
=

nd
c
−
αad

(
ab
c

)d−1

c

n∑
i=1

xd
i + (β − 1)

n∑
i=1

eα
(

abxi
c

)d

×


abde−α

(
abxi

c

)d (
eα

(
abxi

c

)d

− 1
)
αxi(abxi/c)d−1 − αabdxi(abxi/c)d

c2

(
eα

(
abxi

c

)d

− 1
)

 , (4.6)

and

∂ℓ

∂d
=

n(ab/c)−d
[
αβ(ab/c)d + (ab/c)ddαβ log(ab/c)

]
dαβ

− α(ab/c)d log(ab/c)
n∑

i=1

xd
i

+

n∑
i=1

log(xi) − α(ab/c)d
n∑

i=1

xd
i log(xi) + (β − 1)

n∑
i=1

eα
(

abxi
c

)d

×


α(abxi/c)d log(abxi/c) − e−α

(
abxi

c

)d (
eα

(
abxi

c

)d

− 1
)

(abxi/c)dα(abxi/c)d−1

c2

(
eα

(
abxi

c

)d

− 1
)

 . (4.7)

Equating the score functions to zero and solving the resulting system of equations numerically, the
estimates α̂, β̂, â, b̂, ĉ, and d̂ are obtained.
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4.2. Maximum Product of Spacing Estimation

Consider the order statistics of a random sample from the EGWE distribution, denoted by
x(1:n), x(2:n), ..., x(n:n), and consider the uniform spacings for the random sample:

Di(α, β, a, b, c, d) = F(x(i)|α, β, a, b, c, d) − F(x(i−1)|α, β, a, b, c, d), i = 1, 2, ..., n + 1,

where F(x(0)|α, β, a, b, c, d) = 0, F(x(n+1)|α, β, a, b, c, d) = 1,
∑n+1

i=1 Di(α, β, a, b, c, d) = 1,

F(x(i)|α, β, a, b, c, d) =
[
1 − e−α

(
abxi

c

)d]β
, F(x(i−1)|α, β, a, b, c, d) =

[
1 − e−α

(
abxi−1

c

)d]β
. Therefore, the max-

imum product spacing estimators (MPEs) of α̂MPS E, β̂MPS E, âMPS E, b̂MPS E, ĉMPS E, and d̂MPS E follow
by maximizing either the geometric mean spacings or the logarithm of the sample geometric mean
spacings which are defined by

MS (α, β, a, b, a, d) =

 n+1∏
i=1

Di(α, β, a, b, c, d)


1

n+1

and

LM(α, β, a, b, a, d) =
1

n + 1

n+1∑
i=1

log[Di(α, β, a, b, c, d)],

with respect to α, β, a, b, c, and d.
The MPSEs of the EGWE parameters can also be obtained by solving the following non-linear equa-
tions:

1
n + 1

n+1∑
i=1

1
Di(α, β, a, b, c, d)

[
Λr(x(i)|α, β, a, b, c, d) − Λr(x(i−1)|α, β, a, b, c, d)

]
= 0, r = 1, 2, ..., 6,

where

Λ1(x(i)|α, β, a, b, c, d) = ∂
∂α

F(x(i)|α, β, a, b, c, d), Λ2(x(i)|α, β, a, b, c, d) = ∂
∂β

F(x(i)|α, β, a, b, c, d),
Λ3(x(i)|α, β, a, b, c, d) = ∂

∂a F(x(i)|α, β, a, b, c, d), Λ4(x(i)|α, β, a, b, c, d) = ∂
∂b F(x(i)|α, β, a, b, c, d),

Λ5(x(i)|α, β, a, b, c, d) = ∂
∂c F(x(i)|α, β, a, b, c, d), and Λ6(x(i)|α, β, a, b, c, d) = ∂

∂d F(x(i)|α, β, a, b, c, d).
The Λr for r = 1, 2, ..., 6. can be solved numerically.

4.3. Least Squares and Weighted Least Squares Estimation

Consider the order statistics of a random sample from the EGWE distribution denoted by
x(1:n), x(2:n), ..., x(n:n). The least squares estimators (LSEs) of the EGWE parameters α̂LS E, β̂LS E, âLS E,
b̂LS E, ĉLS E, and d̂LS E follow by minimizing

L(α, β, a, b, c, d) =
n∑

i=1

[
F(x(i:n)|α, β, a, b, c, d) −

i
n + 1

]2

,
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with respect to α, β, a, b, c, and d. Alternatively, the LSEs are obtained by solving the non-linear
n∑

i=1

[
F(x(i:n)|α, β, a, b, c, d) −

i
n + 1

]
Λr(x(i:n)|α, β, a, b, c, d) = 0, r = 1, 2, ..., 6,

where Λ1(.|α, β, a, b, c, d), Λ2(.|α, β, a, b, c, d), Λ3(.|α, β, a, b, c, d), Λ4(.|α, β, a, b, c, d),
Λ5(.|α, β, a, b, c, d), and Λ6(.|α, β, a, b, c, d) are as defined earlier.
The weighted least squares estimators (WLSEs) of the EGWE parameters α̂WLS E, β̂LWS E, âWLS E, b̂WLS E,
ĉWLS E, and d̂WLS E, can be obtained by minimizing the Equation (4.8) with respect to the parameters

W(α, β, a, b, c, d) =
n∑

i=1

(n + 1)2(n + 2)
i(n − i + 1)

[
F(x(i:n)|α, β, a, b, c, d) −

i
n + 1

]2

. (4.8)

Also, the WLSEs can be obtained by solving the non-linear equation in Equation (4.9)
n∑

i=1

(n + 1)2(n + 2)
i(n − i + 1)

[
F(x(i:n)|α, β, a, b, c, d) −

i
n + 1

]
Λr(.|α, β, a, b, c, d) = 0, r = 1, 2, ..., 6. (4.9)

4.4. Cramér-von Mises Estimation

The Cramér-von Mises estimators (CVMEs) of the EGWE parameters can be estimated by mini-
mizing Equation (4.10) with respect to α, β, a, b, c, and d

C(α, β, a, b, c, d) =
1

12n
+

n∑
i=1

[
F(x(i:n)|α, β, a, b, c, d) −

2i − 1
2n

]2

. (4.10)

Alternatively, the CVMEs can be obtained by solving Equation (4.11) numerically.
n∑

i=1

[
F(x(i:n)|α, β, a, b, c, d) −

2i − 1
2n

]
Λr(.|α, β, a, b, c, d) = 0, r = 1, 2, ..., 6. (4.11)

4.5. Anderson-Darling Estimation

The Anderson-Darling estimators (ANDEs) are considered a type of minimum distance estimators.
The ANDEs of the EGWE parameters can be estimated by minimizing Equation (4.12)

A(α, β, a, b, c, d) = −n −
1
n

n∑
i=1

(2i − 1)
{
log

[
F(x(i:n)|α, β, a, b, c, d)

]
+ log

[
F̄(x(i:n)|α, β, a, b, c, d)

]}
(4.12)

with respect to α, β, a, b, c, and d. These estimates can also be obtained by solving Equation (4.13)
numerically.

n∑
i=1

(2i − 1)
[
Λr(x(i:n)|α, β, a, b, c, d)
F(x(i:n)|α, β, a, b, c, d)

−
Λ j(x(n+1−i:n)|α, β, a, b, c, d)
F̄(x(n+1−i:n)|α, β, a, b, c, d)

]
= 0, r, j = 1, 2, ..., 6, (4.13)

where F̄(x(n+1−i:n)|α, β, a, b, c, d) = 1 −
[
1 − e−α

(
abxn+1−i

c

)d]β
.
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5. Monte Carlo Simulation

In this section, simulation study to assess the performance of the six different estimators of the
EGWE parameters. We generated 2000 samples from the EGWE distribution for sample sizes, n =
40, 70, 100, 200, 400 and for α = 1.02, β = 0.32, a = 1, b = 0.1, c = 0.14, and d = 0.2 and α = 1.25,
β = 0.41, a = 0.21, b = 0.17, c = 0.61, and d = 1. The properties of the estimators are investigated by
computing average absolute biases (AVBs) and mean square errors (MSEs) for each of the parameters.
Simulation results of the six estimation methods are presented in Tables 3 and 5. For all the estimation
methods, the AVBs approaches zero as the sample size increases, evident that these estimates behave
as asymptotically unbiased estimators. Also, the MSEs for all the estimation methods decrease for all
parameters combinations as the sample size increases, an indication that the estimators are consistent.
Again, all the estimates of the EGWE parameters obtained from the six estimation methods are fairly
good, providing credible MSEs and small AVBs. Therefore, the results show that all the estimation
methods perform well in estimating the parameters of the EGWE distribution.

6. Applications

This section illustrates the usefulness and flexibility of the EGWE distribution using real life
datasets.
The performance of the EGWE distribution is compared with other distributions. The performance of
the distributions about providing proper parametric fit to the dataset is compared using the AIC, BIC,
Cramér-von Misses (W∗), Anderson-Darling (A∗) and K-S statistics. The distribution with the least of
these measures provides a reasonable fit to the dataset. The competitive distributions of the EGWE
distribution as listed in Table 2.

Table 2. Competing distributions of the EGWE distribution

Competing Distribution Abbreviation Author(s)
Weibull Exponential WE Bilal et al. [19]
Exponentiated Exponential Inverse Weibull EEIW Badr and Sobahi [23]
Exponentiated Generalized Fréchet EGF Cordeiro et al. [8]
Marshall-Olkin Power Lomax MOPLX ul Haq et al. [25]
Weibull W -
Exponential E -

6.1. Blood Cancer

The second dataset consists of lifetime (in years) of 40 blood cancer (leukemia) patients from one
military hospital in Saudi Arabia. This data was also used by Klakattawa [26]. It is available in R
package DataSetsUni by Imran et al. [24]. Figure 7 shows the TTT plot of the hazard rate of the blood
cancer dataset, there is evidence of increasing hazard rate function. The box plot, violin plot, histogram
and kernel density plot of the blood cancer dataset is as displayed in Figure 8.
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Table 3. Simulation results of several estimation methods for α = 1.02, β = 0.32, a = 1,
b = 0.1, c = 0.14, d = 0.2

Parameter n MLEs ANDEs CVMEs MPEs LSEs WLEs
AVBs

40 0.1229 0.2199 0.3925 0.1129 0.3620 0.1788
70 0.0646 0.1423 0.2465 0.0590 0.2473 0.1098

α 100 0.0466 0.1066 0.1911 0.0434 0.2104 0.0820
200 0.0242 0.0564 0.1237 0.0253 0.1171 0.0474
400 0.0195 0.0347 0.0771 0.0190 0.0770 0.0304
40 0.2808 0.3276 1.9227 0.2399 2.1162 0.3840
70 0.1630 0.1802 0.2784 0.1480 0.2827 0.1933

β 100 0.1205 0.1445 0.1921 0.1217 0.2225 0.1446
200 0.0750 0.0941 0.1281 0.0754 0.1216 0.0988
400 0.0530 0.0625 0.0851 0.0534 0.0862 0.0654
40 0.5702 0.5550 0.9806 0.4126 1.3987 1.5624
70 0.5518 0.5469 0.5125 0.3732 0.5266 0.7347

a 100 0.5111 0.5113 0.4757 0.3249 0.4965 0.6099
200 0.4958 0.5088 0.4739 0.3127 0.4884 0.6026
400 0.4864 0.5019 0.4674 0.2754 0.4881 0.5781
40 0.9303 1.0175 1.4871 0.9199 1.8661 1.9410
70 0.9167 0.9483 0.9836 0.9107 0.9821 1.1405

b 100 0.9124 0.9382 0.9562 0.9078 0.9714 1.0085
200 0.9072 0.9205 0.9318 0.9034 0.9186 0.9315
400 0.9062 0.9119 0.9176 0.9018 0.9186 0.9315
40 0.4859 0.6207 0.8387 1.2055 1.0841 1.5213
70 0.4280 0.5576 0.7471 1.1065 0.7670 0.4771

c 100 0.4102 0.5116 0.7190 0.9889 0.7400 0.4536
200 0.3614 0.4505 0.5938 0.9756 0.6235 0.4163
400 0.3286 0.4167 0.5238 0.8868 0.5248 0.3665
40 0.1883 0.0917 0.1349 1.0894 0.1331 0.1048
70 0.1109 0.0722 0.1041 1.0628 0.1029 0.0797

d 100 0.0677 0.0617 0.0895 0.0504 0.0920 0.0680
200 0.0396 0.0435 0.0658 0.0349 0.0630 0.0489
400 0.0265 0.0306 0.0440 0.0240 0.0447 0.0329
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Table 4. Cont.:Simulation results of several estimation methods for α = 1.02, β = 0.32,
a = 1, b = 0.1, c = 0.14, d = 0.2

Parameter n MLEs ANDEs CVMEs MPEs LSEs WLEs
MSEs

40 0.1046 0.1838 0.5916 0.0877 0.4789 0.1621
70 0.0234 0.0659 0.1825 0.0186 0.1841 0.0568

α 100 0.0126 0.0408 0.1088 0.0099 0.1306 0.0322
200 0.0021 0.0122 0.0523 0.0105 0.0458 0.0097
400 0.0008 0.0040 0.0214 0.0005 0.0216 0.0029
40 0.4703 3.6679 8.9208 0.2796 5.8799 2.0992
70 0.0588 0.0872 0.5010 0.0522 0.5127 0.1200

β 100 0.0313 0.0528 0.1108 0.0330 0.4198 0.0488
200 0.0102 0.0176 0.0318 0.0102 0.0275 0.0176
400 0.0053 0.0067 0.0127 0.0050 0.0131 0.0070
40 0.4490 1.7992 2.4970 0.3070 3.4764 9.0713
70 0.3875 0.4087 0.4928 0.2532 0.4647 2.4993

a 100 0.3872 0.3932 0.3728 0.2009 0.5931 0.5560
200 0.3870 0.3745 0.3693 0.1656 0.3854 0.4469
400 0.3789 0.3654 0.3489 0.1184 0.3651 0.4415
40 0.8910 2.9257 1.7057 0.8483 8.0646 2.4440
70 0.8430 0.9201 1.1090 0.8299 1.0765 2.9913

b 100 0.8336 0.8946 0.9307 0.8243 1.3080 1.1517
200 0.8234 0.8514 0.8728 0.8163 0.8661 0.9531
400 0.8218 0.8337 0.8434 0.8133 0.8462 0.8752
40 0.4912 0.7773 1.5146 2.6497 5.3615 0.6009
70 0.3251 0.5953 1.0958 2.1419 1.1381 0.5056

c 100 0.2850 0.4606 0.9429 1.7472 1.0174 0.4018
200 0.2024 0.3076 0.6302 1.5527 0.6734 0.3225
400 0.1438 0.2297 0.4344 1.1183 0.4233 0.2241
40 0.1032 0.0138 0.0307 0.0139 0.0293 0.0183
70 0.0471 0.0086 0.0191 1.0066 0.0184 0.0105

d 100 0.0170 0.0064 0.0144 0.0041 0.0149 0.0081
200 0.0046 0.0031 0.0079 0.0020 0.0073 0.0042
400 0.0018 0.0015 0.0034 0.0009 0.0036 0.0018
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Table 5. Simulation results of several estimation methods for α = 1.25, β = 0.41, a = 0.21,
b = 0.17, c = 0.61, d = 1

Parameter n MLEs ANDEs CVMEs MPEs LSEs WLEs
AVBs

40 0.2466 0.1966 0.2185 0.2392 0.2176 0.4189
70 0.2187 0.1191 0.1681 0.1853 0.1766 0.3158

α 100 0.2128 0.0983 0.1606 0.1806 0.1491 0.2415
200 0.2131 0.0650 0.1317 0.1607 0.1328 0.1572
400 0.2051 0.0360 0.1028 0.1295 0.1075 0.1125
40 0.3430 0.3571 1.9030 0.3700 9.1583 0.7496
70 0.2000 0.2264 0.3799 0.1715 0.3718 0.2450

β 100 0.1436 0.1706 0.2525 0.1434 0.2545 0.1926
200 0.0976 0.1032 0.1630 0.0822 0.1582 0.1197
400 0.0682 0.0554 0.1055 0.0455 0.1083 0.0813
40 0.1097 0.1427 1.7774 0.1031 4.3931 0.2077
70 0.0969 0.1461 0.1490 0.0911 0.1530 0.1021

a 100 0.0924 0.1457 0.1432 0.0824 0.1471 0.3987
200 0.0889 0.1375 0.1482 0.0660 0.1490 0.1656
400 0.0883 0.1204 0.1246 0.0556 0.1550 0.1683
40 0.9798 1.0167 3.0707 0.9367 9.0912 1.5213
70 0.9291 0.9219 0.9337 0.8815 0.9152 1.0605

b 100 0.9027 0.8889 0.8910 0.8741 0.8947 0.9925
200 0.8880 0.8577 0.8684 0.8599 0.8622 0.9185
400 0.0883 0.8439 0.8540 0.8495 0.8537 0.8964
40 1.4299 0.7872 2.1427 1.1917 0.6178 8.7772
70 1.2699 0.2602 0.3391 1.1771 0.3270 7.4854

c 100 1.2504 0.1767 0.3106 1.1210 0.2893 3.9764
200 1.2333 0.0926 0.2472 1.1045 0.2459 0.2170
400 1.2525 0.0563 0.2055 1.0279 0.2008 0.1551
40 0.5231 0.4857 0.7384 0.4665 0.6788 0.5474
70 0.3668 0.3463 0.5195 0.3055 0.5545 0.4194

d 100 0.2764 0.2923 0.4453 0.2573 0.4330 0.3325
200 0.1828 0.1905 0.3056 0.1489 0.3002 0.2196
400 0.1252 0.1038 0.2022 0.0832 0.2079 0.1526
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Table 6. Cont. :Simulation results of several estimation methods for α = 1.25, β = 0.41,
a = 0.21, b = 0.17, c = 0.61, d = 1

Parameter n MLEs ANDEs CVMEs MPEs LSEs WLEs
MSEs

40 0.1671 0.3875 0.1733 0.2539 0.1997 1.3612
70 0.0999 0.0570 0.0651 0.0702 0.1004 0.9954

α 100 0.0770 0.0349 0.0598 0.0545 0.0467 0.3292
200 0.0577 0.0145 0.0344 0.0390 0.0406 0.1327
400 0.0486 0.0043 0.0179 0.0296 0.0198 0.0591
40 1.5840 0.6987 5.6071 3.0888 4.7365 4.6399
70 0.1258 0.1775 0.8772 0.0719 1.2625 0.1930

β 100 0.0416 0.0731 0.2125 0.0439 0.2151 0.0855
200 0.0166 0.0235 0.0573 0.0146 0.0554 0.0261
400 0.0078 0.0075 0.0196 0.0047 0.0208 0.0261
40 0.0299 0.0239 8.7568 0.3016 9.3069 6.5420
70 0.0119 0.0242 0.0349 0.0120 0.0432 3.7078

a 100 0.0108 0.0239 0.0236 0.0104 0.0257 1.8232
200 0.0098 0.0229 0.0235 0.0076 0.0237 0.0288
400 0.0093 0.0203 0.0217 0.0062 0.0219 0.0285
40 1.1748 1.4592 7.2156 1.1932 6.4995 6.6657
70 0.9211 0.9850 1.1196 0.7884 0.9438 1.6042

b 100 0.8355 0.8308 0.8167 0.7717 0.8471 1.2640
200 0.8048 0.7423 0.7622 0.7430 0.7493 0.8961
400 0.7995 0.7137 0.7319 0.7227 0.7313 0.8284
40 4.9904 9.8948 6.9909 3.2280 8.3435 5.3675
70 2.9155 0.9278 0.5650 2.1949 0.5268 3.6583

c 100 2.4274 0.3666 0.4249 2.1597 0.3394 2.6055
200 2.0310 0.0612 0.1455 2.1092 0.1471 0.1781
400 1.9411 0.0082 0.0885 2.0100 0.0829 0.0766
40 0.5158 0.4431 0.9951 0.4189 0.8524 0.5691
70 0.2480 0.2254 0.5166 0.2014 0.5907 0.3417

d 100 0.1385 0.1649 0.4000 0.1348 0.3671 0.2086
200 0.0598 0.0774 0.1840 0.0474 0.1781 0.0894
400 0.0278 0.0264 0.0735 0.0165 0.0792 0.0404

6.2. Annual Wheat Yield

This first dataset consists of annual wheat yield for the period from 1951 to 2010. The units are tons
per hectares. This data was also studied by Ristić et al. [27] in fitting the generalized beta exponential
distribution. Also, this dataset is available in R package DataSetsUni by Imran et al. [24]. Figure 3
shows the TTT plot of the hazard rate of the annual wheat yield dataset, there is evidence of increasing
hazard rate function. The box plot, violin plot, histogram and kernel density plot of the annual wheat
yield dataset is as displayed in Figure 4. The MLEs, their standard errors (SEs) and the values of AIC,
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Figure 3. TTT plot of the Annual Wheat Yield dataset

Figure 4. Box plot, violin plot, histogram and kernel density plot of the Annual Wheat Yield
dataset
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BIC, K-S, p-value, W*, and A* measures are shown in Table 7. From the information criteria and
goodness-of-fit measures, the EGWE distribution provides the best parametric fit to the annual wheat
yield dataset compared to the other competing distributions.

Table 7. MLEs, SEs, Information criteria, goodness-of-fit measures for annual wheat yield
data

Model MLEs(SEs) AIC BIC W* A* K-S(P-value)
α̂ 1.0238(0.0484)
β̂ 3.8600(0.2146)

EGWE â 1.0421(0.1430) 96.3129 100.5016 0.0467 0.4178 0.0789(0.8989)
b̂ 1.1683(0.1276)
ĉ 2.6626(0.0560)
d̂ 3.0110(1.3801)
α̂ 0.6854(0.0125)

WE λ̂ 1.3527(0.0063) 99.8126 108.1900 0.0482 0.4365 0.0917(0.7138)
γ̂ 2.6616(0.0032)
ĉ 5.6778(0.5539)
α̂ 1.6790(0.4788)

EEIW β̂ 21.4822(22.3213) 521.6035 527.8865 0.1098 0.6518 0.8020(<0.0002)
ĉ 17.3836(3.5324)
α̂ 0.2092(0.1749)

EGF β̂ 34.9899(49.0802) 107.9495 116.3269 0.2796 1.5429 0.1342(0.2297)
λ̂ 24.3685(20.1387)
σ̂ 1.1696(0.2951)
α̂ 2.5742(2.4473)

MOPLX β̂ 4.8391(2.2357) 101.1392 109.5165 0.0671 0.5177 0.9999(<0.0002)
γ̂ 58.4800(137.6630)
λ̂ 15.0154(32.9476)

W α̂ 5.2972(0.6355) 101.2384 113.8045 0.0643 0.4336 0.0917(0.7715)
γ̂ 0.0039(0.0029)

E λ̂ 0.3761(0.0486) 239.3390 241.4333 0.0791 0.4958 0.4884(0.0070)

Figure 5 shows the empirical, fitted CDF and density of the EGWE distribution for the annual
wheat yield. From the plot, it is evident that the EGWE distribution provides a good parametric fit to
the annual wheat yield dataset.
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Figure 5. Empirical, Fitted CDF and density of the EGWE distribution for annual wheat
yield dataset

The six estimation methods are used to estimate the EGWE parameters from the annual wheat
yield dataset. This is reported in Table 8. From the K-S and p-value, the CVMEs is recommended for
estimating the EGWE parameters for annual wheat yield dataset. Nevertheless, it can be concluded that
all the six estimation methods performed well. This is supported by the comparison of the histogram
of the annual wheat yield dataset with the fitted PDFs of the six estimation methods as shown in Figure
6.

Table 8. Estimates of EGWE parameters using six estimation methods for annual wheat
yield

Model α̂ β̂ â b̂ ĉ d̂ K-S P-value
MLEs 0.3852 3.8599 0.6501 0.8978 0.9228 3.0111 0.0902 0.7138
ANDEs 1.5796 1.8365 0.3401 0.8436 0.8240 4.0255 0.0735 0.9107
CVMEs 0.0626 0.9963 3.3527 3.0881 18.0682 5.6361 0.0724 0.9118
MPSEs 1.7274 4.0874 0.4521 0.4028 0.4679 2.7817 0.0773 0.8662
LSEs 0.0242 1.0013 4.1076 2.7669 16.4589 5.4822 0.0767 0.8723
WLEs 0.2982 2.4192 0.7513 0.9878 1.2685 3.4945 0.0757 0.8818
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Figure 6. Histogram of the annual wheat yield and the fitted EGWE densities of the six
estimation methods

The MLEs, their standard errors (SEs) and the values of AIC, BIC, K-S, p-value, W*, and A*
measures are shown in Table 9. From the information criteria and goodness-of-fit measures, the EGWE
distribution provides the best parametric fit to the blood cancer dataset compared to the other competing
distributions.
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Figure 7. TTT plot of the Blood Cancer dataset

Figure 8. Box plot, violin plot, histogram and kernel density plot of the Blood Cancer dataset
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Table 9. MLEs, SEs, Information criteria, goodness-of-fit measures for blood cancer data

Model MLEs(SEs) AIC BIC W* A* K-S(P-value)
α̂ 0.1730(0.0503)
β̂ 0.1466(0.0536)

EGWE â 2.9710(0.2103) 142.0847 152.2179 0.0196 0.1398 0.0655(0.9955)
b̂ 0.4010(0.0407)
ĉ 3.5027(2.2504)
d̂ 11.1345(3.2894)
α̂ 1.7345(0.1138)

WE λ̂ 0.1314(0.0086) 147.1159 153.8714 0.1187 0.7730 0.1184(0.6288)
γ̂ 0.8018(25.1382)
ĉ 2.4993(0.3370)
α̂ 0.4340(0.0713)

EEIW β̂ 60.8941(22.3213) 158.1529 163.2195 0.3174 1.9084 0.1708(0.1708)
ĉ 6.9759(0.9052)
α̂ 80.7544(56.9057)

EGF β̂ 0.3831(0.2078) 156.7574 163.5129 0.2683 1.6423 0.1856(0.1270)
λ̂ 0.6252(0.1485)
σ̂ 49.1291(28.9483)
α̂ 16.0181(14.0614)

MOPLX β̂ 1.5232(0.5849) 145.0175 151.7731 0.4712 1.8031 0.1572(<0.0002)
γ̂ 13.0698(21.4573)
λ̂ 33.0423(49.2064)

W α̂ 2.4997(0.3372) 143.1159 146.4937 0.1187 0.7729 0.1184(0.6290)
γ̂ 0.0431(0.0214)

E λ̂ 0.3184(0.0503) 173.5563 175.2452 0.2434 1.4964 0.3002(0.0015)
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Figure 9 shows the empirical, fitted CDF and density of the EGWE distribution for the annual
wheat yield. From the plot, it is evident that the EGWE distribution provides a good parametric fit to
the annual wheat yield dataset.

Figure 9. Empirical, Fitted CDF and density of the EGWE distribution for blood cancer
dataset

The six estimation methods are used to estimate the EGWE parameters from the blood cancer
dataset. This is reported in Table 10. From K-S and p-value, the ANDEs is recommended for estimating
the EGWE parameters for blood cancer dataset. Nevertheless, it can be concluded that all the six
estimation methods performed well. This is supported by the comparison of the histogram of the blood
cancer dataset with the fitted PDFs of the six estimation methods as shown in Figure 10.

Table 10. Estimates of EGWE parameters using six estimation methods for blood cancer
data

Model α̂ β̂ â b̂ ĉ d̂ K-S P-value
MLEs 0.0311 0.1733 1.4770 1.1095 5.5713 9.7917 0.0667 0.9942
ANDEs 0.1172 0.1684 1.0422 0.5691 2.3633 9.8751 0.0565 0.9995
CVMEs 0.0061 0.1587 3.7185 0.8182 9.3756 10.7655 0.4400 <0.0003
MPSEs 0.1959 0.1355 0.5956 0.4212 1.0988 10.9972 0.0789 0.9642
LSEs 0.0098 0.1811 2.6596 0.7379 5.9192 9.2133 0.0601 0.9987
WLEs 0.0344 2.1649 0.4042 1.8039 2.5939 9.8185 0.4221 <0.0001
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Figure 10. Histogram of the blood cancer and the fitted EGWE densities of the six estimation
methods

7. Conclusion

In this article, a new distribution called exponentiated generalized Weibull exponential (EGWE)
distribution is proposed and studied. The density can exhibit decreasing, increasing, right-skewed, and
left-skewed shapes. The hazard rate function shows decreasing, J-shaped, bathtub, and upside-down
bathtub shapes. Eight sub-models, namely Rayleigh, exponential, Weibull, exponentiated exponential
Weibull distribution, Weibull exponential, exponentiated Weibull, and generalized Weibull distribu-
tions are identified. Statistical properties such as asymptotic behaviors, quantile function, moment and
incomplete moments, mean and median deviations, inequality measures, moment generating function,
and order statistics are studied. The estimation of the parameters of the EGWE distribution using
six frequentist estimation methods, namely maximum likelihood, least squares, maximum product of
spacing, weighted least squares, Anderson-Darling, and Cramér-von Mises are discussed. A detailed
simulation study to ascertain the behavior of the estimators in terms of average absolute biases and
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mean square error was carried out. The results showed that all estimators performed well since the
average absolute biases and mean square errors decrease as the sample size increases. The usefulness
and flexibility of the EGWE distribution is illustrated with two real-life data, namely the blood cancer
and annual wheat yield datasets. From the two datasets, the EGWE distribution provides better
parametric fit compared with the competing distributions. In estimating the parameters of the EGWE
distribution from the six estimation methods, the CVMEs is most appropriate for estimating the
EGWE parameters from the annual wheat yield data whereas the ANDEs is the most appropriate for
estimating parameters from the blood cancer data. Nevertheless, the performance of the six estimators
is good in the case of the two datasets. It is our hope that this model will receive much attention in
economics, finance, reliability, medicine, and other related fields.
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