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Abstract: In this paper, exponentiated-G family of distributions is constructed as a new family of
discrete distribution, using the general approach of discretization of a continuous distribution. Some
statistical properties including quantile, mean residual life, mean time to failure, mean time between
failure, availability, Rényi entropy, moments and order statistics are obtained. Discrete exponentiated
inverted Topp–Leone distribution as a member of this family is studied in detail. Maximum likelihood
approach is applied under Type-II censored sample for estimating the unknown parameters of the ex-
ponentiated inverted Topp–Leone distribution. Also, maximum likelihood estimators of the survival,
hazard rate and alternative hazard rate functions are derived. The confidence intervals for the param-
eters, survival, hazard rate and alternative hazard rate functions are obtained. A simulation study is
performed to investigate the accuracy of the theoretical results. Finally, two real data sets are analyzed
to illustrate the flexibility and applicability of the proposed model for real-life applications.
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1. Introduction

Discretization generally arises when it is difficult to measure the life length of a product or device
on a continuous scale. Such situations may arise when it is difficult to get samples from a continuous
distribution in real life. The observed values are discrete because they are usually measured to only
a finite number of decimal places and can’t really constitute all points in a continuum. Even if the
measures are taken on a continuous (ratio or interval) scale, the observations may be recorded in a way
making discrete model more appropriate. Therefore, it is reasonable to consider the observations as
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coming from a discretized distribution generated from the continuous model. For example, in survival
analysis, the survival times for leukemia or lung cancer patients survived since therapy, length of stay
in observation ward or the period from remission to relapse may be recorded as a number of days
or weeks. Also, in engineering systems, the number of voltages fluctuations, which an electrical or
electronic item can withstand before its failure, the number of completed cycles or the number of times
it operated before failure, the life of weapon is measured by the number of rounds fired prior to failure,
or the number of times a device is switched on/off. Therefore, it is reasonable and appropriate to model
such situations by a suitable discrete distribution. Although, classical discrete distribution is accessible
to model such situations, for example, geometric and negative binomial distributions which are the
discrete versions for the exponential and gamma distributions, respectively, but it is well known that
they have monotonic hazard rate function (hrf) and thus they are unsuitable for some situations.

There are few discrete distributions which can provide accurate models for both count and time.
Poisson distribution is a model used to count but not time. Also, binomial distribution is not consid-
ered to be popular model for reliability, failure times and counts. It can be approximated to Poisson
distribution under suitable conditions. In addition to that, these discrete distributions only cater to
positive integers along with zero, but in some analysis the variable of interest can take either zero,
positive or negative values. In many situations the interest may be in the difference of two discrete ran-
dom variables (drvs) each having integer support (0,∞). The resulting difference will be another drv
with integer support (−∞,∞), see Chakraborty and Chakravorty [10]. Thus, there is a need to intro-
duce more flexible discrete distributions, especially those arising from the discretization of continuous
distributions to handle more sophisticated real-life phenomena.

2. General Approach of Discretization

There are several techniques to construct discrete distributions from the continuous ones, among
these is the survival discretization method. One of the advantages of applying this methodology is
that the developed discrete model keeps the same form of the survival function (sf) as of the sf for
the continuous counterpart distribution. Therefore, many reliability characteristics of the distribution
remain unchanged. Thus, this approach of discretization of continuous lifetime model is interesting
and simple approach to derive a discrete lifetime model corresponding to the continuous one.

If the underlying continuous failure time X has the sf, S (x) = P (X ≥ x) and times are grouped into
unit intervals so that the discrete observed variable is discrete X (dX) = ⌊X⌋, the largest integer is less
than or equal to X, the probability mass function (pmf) of dX can be written as

P (x) = P (dX = x) = P(x ≤ dX < x + 1)
= S (x) − S (x + 1) , x = 0, 1, 2, . . . .

(1)

Therefore, for any continuous distribution, it is possible to construct corresponding discrete distribution
using (1).
Many researchers used this approach to develop several discrete distributions. For instance, Nakagawa
and Osaki [37] introduced the discrete Weibull distribution with some important reliability proper-
ties. Kemp [31] presented the discrete normal distribution that is characterized by maximum entropy
specified mean and variance and integer support on (−∞,∞).

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 2, 303–327



305

Roy [42] introduced discrete normal distribution, Inusah and Kozubowski [29] obtained a discrete
version of the Laplace distribution and discussed some of its properties and statistical issues of estima-
tion. Also, Gomez-Deniz and Calderin-Ojeda [20] considered discrete Lindley distribution. AL-Huniti
and AL-Dayian [4] presented the discrete Burr Type III distribution; they discussed some important
properties and estimated the parameters based on the maximum likelihood (ML) and Bayesian ap-
proaches. Para and Jan [38] derived the discrete Burr-Type XII distribution. Alamatsaz et al. [3]
proposed the discrete generalized Rayleigh distribution, and the reliability properties were discussed,
they also estimated the parameters and analyzed two real data sets to investigate the suitability of the
distribution in modeling count data.
Hussain et al. [27] discussed a two-parameter discrete Lindley distribution which is considered as
a new generalization of the geometric distribution. Chakraborty and Chakravorty [10] derived the
discrete logistic distribution and applied it to model real life count data. Ahmad et al. [2] presented a
discrete flexible model: Geeta- Kumaraswamy distribution. They discussed some important properties
and estimated the parameters based on the ML criteria.
Hegazy et al. [23] presented the discrete Gompertz distribution, they discussed some statically prop-
erties of the distribution and estimated the parameters based on the ML method. Maiti et al. [34]
proposed the discrete X-Gamma distribution. Helmy [26] presented the discrete Burr Type II distri-
bution; she discussed some important properties and estimated the parameters based on the ML and
Bayesian approaches.

Hegazy et al. [24] introduced the discrete inverted Kumaraswamy distribution. They obtained some
of its important distributional and reliability properties; they also used the moments and ML methods to
estimate the model parameters. Elmorshedy and Eliwa [17] presented a new two-parameter exponenti-
ated discrete Lindley distribution; they discussed some statistical properties of distribution. They used
the ML method to estimate the parameters of the distribution. Almetwally and Ibrahim [5] proposed
the discrete alpha power inverse Lomax distribution with Application of COVID-19 data and discussed
some statistical properties of the distribution. They derived the ML estimators and confidence inter-
vals for the distribution. Eliwa et al. [14] introduced discrete Gompertz-G Family of distributions for
over-and under-dispersed data, they also studied some of its distributional properties and reliability
characteristics. They also used the ML method for estimating the family parameters. Chotedelok and
Bodhisuwan [11] obtained the discrete exponentiated Pareto distribution with properties and applica-
tion. Tyagi et al. [43] presented inferences on discrete Rayleigh distribution under Type-II censored
data.
Hegazy et al. [25] introduced the Bayesian estimation and prediction of discrete Half Logistic dis-
tribution. Ibrahim et al. [28] proposed the discrete analogue of the Weibull-G family. They studied
its properties and estimation of the parameters using Bayesian and non- Bayesian estimation methods.
El-Deep et al. [13] presented the discrete analog of inverted Topp-Leone Distribution. El-Morshedy et
al. [18] introduced the discrete odd Weibull -G family of distributions, they studied the discrete odd
Weibull – Geometric and discrete odd Weibull – inverse Weibull as special models in detail. Eliwa
et al. [15] derived the discrete exponential generalized G family of distributions, they studied some
of its important properties and the properties of the discrete exponential generalized Weibull. Altun
et al. [7] obtained a new one parameter called discrete Bilal distribution, they studied its statistical
properties and estimated the model parameter by using the ML and moment methods. Eliwa et al. [16]
constructed new continuous and discrete odd DAL-G family of distributions, and they studied some
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properties of the special models called the new odd DAL-Weibull and discrete new odd DAL-geometric
distributions.

Although there are several discrete distributions in statistical literature, there is still a lot of space
left to develop new discrete distributions that are suitable under different conditions. Therefore, in this
paper, a flexible discrete generator of distributions, called discrete E-G (DE-G) family of distributions
is introduced. In practice the motivation for obtaining generalized family are:

1. Generating a new family with different shapes of hrf.
2. Presenting a new family with different shapes of pmf.
3. To provide consistently better fits than other generated models under the same baseline distribu-

tion and other well-known models in the statistical literature.
4. To improve the characteristics and flexibility of the existing distributions.
5. To introduce the extended version of the baseline distribution having closed form of cumulative

density function (cdf), sf as well as hrf.

There is an increasing interest in constructing new generated families of univariate continuous distribu-
tions by adding additional shape parameter(s) to a baseline model due to the desirable properties of the
new models. Such an addition of parameters makes the resulting distribution richer and more flexible
for modeling data. Some of the well- known generated families are: exponentiated- G by Gupta et al.
[21], beta–G by Eugene et al. [19], Nadarajah [36] discussed the exponentiated Gumbel distribution
with application. Kumaraswamy-G by Cordeiro and de Castro [12]. Alzaghal et al. [8] derived and
studied the exponentiated T-X family of distributions with applications. Korkmaz et al. [32] studied a
family of distributions called the exponential Lindely odd log-logistic-G family. Roa and Mbwambo
[40] derived the exponentiated inverse Rayleigh distribution.

Gupta et al. [21] introduced the general class of exponentiated distributions which is de?ned by
powering a positive real number α to the cdf, i.e., if the random variable X has the cdf G (x), then

F (x;α) = [G (x)]α, α>0, xϵR. (2)

The probability density function (pdf), and sf, of the exponentiated-G (E-G) family are, respectively,
given by

f (x;α) = αg (x) [G (x)]α−1, α>0, xϵR, (3)

and
S (x;α) = 1 − [G (x)]α, α>0, xϵR. (4)

The rest of this paper is organized as follows: in Section 3 , a discrete exponentiated-G (DE-G)
family of distributions and some of its properties are studied. In Section 4, a member of the discrete
G-family of distributions is presented. The ML estimation for the parameters of the distribution is
discussed in Section 5. In Section 6, two real data sets are analyzed to demonstrate how the results can
be used in practice. Finally, concluding remarks are given in Section 7.

3. Construction of Discrete Exponentiated- G Family of Distributions

Applying the survival discretization approach in (1), X = dX can be viewed as the discrete analogue to
the continuous E-G family random variable X, and is commonly said to have DE-G family distribution

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 2, 303–327



307

with parameter α, denoted by DE-G family (α) distribution, where the corresponding pmf of X can be
written as:

P (x;α) = [G (x + 1)]α − [G (x)]α, x = 0, 1, 2, . . . α>0, (5)

the cdf, sf, hrf and alternative hrf (ahrf) can be formulated as:

F (x;α) = [G (x + 1)]α, x = 0, 1, 2, . . . α>0, (6)

S (x;α) = 1 − [G (x)]α, x = 0, 1, 2, . . . α>0, (7)

h (x;α) =
[G (x + 1)]α − [G (x)]α

1 − [G (x)]α
, x = 0, 1, 2, . . . α>0, (8)

and

h1 (x;α) = ln
[

1 − [G (x)]α

1 − [G (x + 1)]α

]
, x = 0, 1, 2, . . . α >0. (9)

3.1. Some statistical properties of discrete exponentiated- G family of distributions

This subsection is devoted to obtain some important statistical properties of DE-G family of distribu-
tions, such as the Quantile, rth moments and order statistics.

3.1.1. Quantile function

The quantile function plays an important role in probability distribution theory, and it is also known as
the inverse cdf. It is used to generate random numbers from a given distribution. The uthquantile of a
drv X, xu, satisfies p (X ≤ xu) ≥ u and p (X ≥ xu) ≥ 1 − u, i.e.,
F (xu − 1) < u ≤ F (xu). [See Rohatgi and Saleh [41]].
The uth quantile, xu, of DE -G family is given by
p (X ≤ xu) ≥ u from (8)

u = [G (x + 1)]α, u
1
α = G (x + 1) , 0 < u < 1 . (10)

3.1.2. Rényi entropy

Entropy refers to the amount of uncertainty associated with the random variable X. It has many ap-
plications in several fields such as econometrics, quantum information; information theory, survival
analysis, and computer science [see Rényi (1961)].
The Rényi entropy which is a measure of variation of the uncertainty of the drv X can be expressed as

Iη (x) =
1

1 − η
log

∑
x

f η (x; ξ) . x = 0, 1, 2, . . .

=
1

1 − η
log

∑
x

[
[G (x + 1)]α − [G (x)]α

]η. x = 0, 1, 2, . . . .

(11)
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The Shannon entropy can be defined by

I (X) = E
[
−log f (xi; ξ)

]
= −log f (xi; ξ)

∑
x

f (xi; ξ)

= −log
[
[G (x + 1)]α − [G (x)]α

]
]
∑

x

[
[G (x + 1)]α − [G (x)]α

]
, x = 0, 1, 2, . . . .

(12)

The Shannon entropy can be derived as a particular case of the Rényi entropy when η→ 1.

3.1.3. Mean residual lifetime function, mean time to failure, mean time between failure, and
availability

The m ean residual life (MRL) function is an important characteristic in various fields such as
reliability engineering, survival analysis, and actuarial studies. It has been extensively studied in the
literature especially for binary systems, that is, when there are only two possible states for the system
as either working or failed.
The MRL is the expected remaining life given that the item has survived to time x0 [see, Kemp [30]]
and is defined by

MRL (x0) =
∑∞

k=x0+1 s (k)
s (x0)

=
1

{1 − [G (x0)]α}

∞∑
k=x0+1

{1 − [G (k)]α} (13)

Mean Time to Failure (MTTF) , Mean Time between Failure (MTBF) , and Availability (Av) are
reliability terms based on methods and procedures for lifecycle prediction for a product. MTTF, MTBF
and Av are ways of providing a numeric value based on a compilation of data to quantify a failure rate
and the resulting time of expected performance. In addition, in request to design and manufacture a
maintainable system, it is necessary to predict the MTTF, MTBF, and Av. [see Eliwa et al. [14]].
The MTBF is given by

MT BF =
−x

log[S (x)]
=

−x
log[1 − [G (x)]α]

, x > 0 . (14)

Then the MTTF is

MTT F =
∞∑

x=1

S (x) =
∞∑

x=1

[1 − [G (x)]α] , x>0 . (15)

The Av is considered as being the probability that the component is successful at time t,

Av =
MTT F
MT BF

. (16)

3.2. Order statistics

Order statistics play an important role in various fields of statistical theory and practice. The cdf of the
ith order statistic for a random sample X1, X2, . . . , Xn, from DE-G family of distributions is given by

Fi:n (x; θ, α) =
n∑

r=i

(
n
r

)
F [(x; θ, α)]r[1 − F (x; θ, α)]n−r, (17)

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 2, 303–327



309

Using the binomial expansion for [1 − F (x; θ, α)]n−r and substituting (8) in (17) it follows that

Fi:n (x; θ, α) =
n∑

r=i

(
n
r

)
[F (x; θ, α)]r

n−r∑
j=0

(
n − r

j

)
(−1) j [F (x; θ, α)] j

.

Hence

Fi:n (x; θ, α) =
n∑

r=i

(
n
r

) n−r∑
j=0

(
n − r

j

)
(−1) j [[G (x + 1)]]α(r+ j)

. (18)

The corresponding pmf of the ith order statistics can be expressed as

P
(
X(i) = x

)
=

n!
(i − 1)! (n − i)!

∫ F(x)

F(x−1)
vi−1(1 − v)n−idv, (19)

where v is a random variable.
Using the binomial expansion for (1 − v)n−i, then, the pmf of (19) is

P
(
X(i) = x

)
=

n!
(i − 1)! (n − i)!

n−i∑
j=0

(
n − i

j

)
(−1)

j ∫ F(x)

F(x−1)
vi+ j−1dv

=
n!

(i − 1)! (n − i)!

n−i∑
j=0

(
n − i

j

)
(−1)

j (
1

i + j

)
×

[
[1 −G (x + 1)]α(r+ j)

− [1 −G (x)]α(r+ j)
]
.

(20)

See Arnold et al. [9].

4. Discrete Exponentiated Inverted Topp – Leone Distribution

The inverted distributions have many applications in different fields such as biological science, life
testing problems, engineering science environmental studies and econometrics.
Hassan and Elgarhy [22] introduced the Inverted Topp – Leone (ITL) distribution with the following
cdf and pdf

FIT L (x; θ) = 1 −
{

(1 + 2x)θ

(1 + x)2θ

}
; x ≥ 0 ; θ > 0, (21)

fIT L (x, θ) = 2θx(1 + x)−2θ−1 (1 + 2x)θ−1
, x ≥ 0 ; θ > 0, (22)

and the sf of the ITL is

S (x, θ) = (1 + x)−2θ (1 + 2x)θ, x ≥ 0 ; θ > 0. (23)

Substituting the cdf of the ITL given in (21); as the baseline cdf, in (5). Then, the pmf of the DE-ITL
distribution can be expressed as:

P (x; θ, α) =
[
1 −

(1 + 2(x + 1))θ

(1 + (x + 1))2θ

]α
−

[
1 −

(1 + 2x)θ

(1 + x)2θ

]α
. x = 0, 1, 2, .., α, θ>0, (24)
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the cdf, sf, hrf and ahrf of the DE-ITL distribution are given by

F (x; θ, α) =
[
1 −

(1 + 2(x + 1))θ

(1 + (x + 1))2θ

]α
, x = 0, 1, 2, . . . , α, θ>0, (25)

S (x; θ, α) = 1 −
[
1 − (1 + 2x)θ(1 + x)−2θ

]α
, x = 0, 1, 2, . . . , α, θ>0, (26)

h (x; θ, α) =

[
1 − (1+2(x+1))θ

(1+(x+1))2θ

]α
−

[
1 − (1+2x)θ

(1+x)2θ

]α
1 −

[
1 − (1 + 2x)θ(1 + x)−2θ

]α , x = 0, 1, 2, . . . , α, θ>0, (27)

and

h1 (x; θ, α) = ln

 1 −
[
1 − (1 + 2x)θ(1 + x)−2θ

]α
1 −

[
1 − (1 + 2(x + 1))θ(1 + (x + 1))−2θ

]α
 , x = 0, 1, 2, . . . , α, θ>0. (28)

The relationship between h1(x) and h(x) , is given by:

h (x)= 1−e−h1(x).

The two concepts h(x) and h1(x) have the same monotonic property, i.e., h1(x) is increasing (decreasing)
only and only if h(x) is increasing (decreasing).
The plots of the pmf, hrf and ahrf of the DE-ITL distribution are presented, respectively, in Figures 1,
2, 3, for some selected values of the parameters.

4.1. Some distributional properties of discrete exponentiated inverted Topp -Leone distribution

This subsection focuses on obtaining some important statistical properties of DE-ITL distribution,
such as the Quantile, rth moments and order statistics.

4.1.1. Quantile function

The uth quantile xu, of the DE-ITL distribution is given by

xu =




1(
1 −

(
1 − u

1
α

) 1
θ

) −1
2

− 1

 − 1


, 0 < u < 1,

where ⌊X⌋denotes the smallest integer greater than or equal to X.
Proof
p (X ≤ xu) ≥ u, from Equation (25), one gets[

1 −
(1 + 2(xu + 1))θ

(1 + (xu + 1))2θ

]α
≥ u,[

1 −
(1 + 2(xu + 1))θ

(1 + (xu + 1))2θ

]
≥ u

1
α ,

(
1 − u

1
α

)
≥

(1 + 2(xu + 1))θ

(1 + (xu + 1))2θ(
1 − u

1
α

) 1
θ
≥

(1 + 2(xu + 1))
(1 + (xu + 1))2 ,

(
1 − u

1
α

) 1
θ
≥

(1 + 2(xu + 1)) + (xu + 1)2
− (xu + 1)2

(1 + (xu + 1))2 ,

(
1 − u

1
α

) 1
θ
≥ 1−

(xu + 1)2

(1 + (xu + 1))2 ,
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Figure 1. Plots of the pmf of DE-ITL (α, θ) for different values of (α, θ)
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Figure 2. Plots of the hrf of DE-ITL (α, θ) for different values of (α, θ)
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Figure 3. Plots of the ahrf of DE-ITL (α, θ) for different values of (α, θ)

Hence

xu =




1(
1 −

(
1 − u

1
α

) 1
θ

) −1
2

− 1

 − 1


. (29)

Similarly, if p (X ≥ xu) ≥ 1 − u, one obtains

xu =


1(

1 −
(
1 − u

1
α

) 1
θ

) −1
2

− 1


. (30)

Combining (29) and (30), one gets


1(
1 −

(
1 − u

1
α

) 1
θ

) −1
2

− 1

 − 1


= xu =


1(

1 −
(
1 − u

1
α

) 1
θ

) −1
2

− 1


.

Hence, xu is an integer value given by

xu =




1(
1 −

(
1 − u

1
α

) 1
θ

) −1
2

− 1

 − 1


. (31)
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By putting u = 0.5 in (31), one gets the median of DE-ITL as follows:

x0.5 =




1(
1 −

(
1 − u

1
α

) 1
θ

) −1
2

− 1

 − 1


. (32)

4.1.2. The moments of the discrete exponentiated inverted Topp – Leone distribution

a. The non-central moments
Calculating a probability distribution’s mean, variance, skewness, kurtosis, and other properties

involves using the distribution’s moments. The non-central moments of DE-ITL distribution are

µ́r =
∑

x

xr

[
1 −

(1 + 2(x + 1))θ

(1 + (x + 1))2θ

]α
−

[
1 −

(1 + 2x)θ

(1 + x)2θ

]α
. x = 1, 2, . . .

In particular, the mean µ is given by:

µ́1 ≡ µ =
∑

x

x
[
1 −

(1 + 2(x + 1))θ

(1 + (x + 1))2θ

]α
−

[
1 −

(1 + 2x)θ

(1 + x)2θ

]α
, (33)

the variance of DE-ITL distribution is

µ2 =
∑

x

x2
[[

1 −
(1 + 2(x + 1))θ

(1 + (x + 1))2θ

]α
−

[
1 −

(1 + 2x)θ

(1 + x)2θ

]α]

−

∑
x

x
[
1 −

(1 + 2(x + 1))θ

(1 + (x + 1))2θ

]α
−

[
1 −

(1 + 2x)θ

(1 + x)2θ

]α 2 (34)

b. The standard moments
The rth standard moments can be obtained as follows:

αr = E
(X − µ
σ

)r

(35)

The skewness and kurtosis are, respectively, given by

α3 =
µ3

µ3/2
2

and α4 =
µ4

µ2
2

,where µr = E(X − µ)r, r = 1, 2, . . . . (36)

The ratio of the variance to the mean is known as the index of dispersion (ID), a method for detecting
whether data is uniformly, unequally, or overly spread is the ID, such as if
ID > 1, it refers to over-dispersion, when ID < 1;it refers to the under-dispersion, and if
ID = 1, then it refers to equi-dispersion. The ID of the DE-ITL distribution can be calculated as
follows:
ID = V(x)

E(x) , where V(x) and E(x) are the variance and mean of X, respectively.
The mean, ID, variance, skewness and kurtosis of the DE-ITL distribution for different values of α
and θ are calculated numerically and displayed in Table 1 using (33) - (36).

From Table 1, one can observe that both values of the mean and variance of the DE-ITL distribution
decrease when the value of the parameter θ increases. Also, the values of the mean and variance
increase and then decrease when the parameter α increases. The DE-ITL distribution can be used to
model positively skewed data. It can be used to model leptokurtic (kurtosis > 3) data. It is suitable for
modeling over- and under-dispersed datasets where the ID > (<) 1.
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Table 1. Some descriptive measures for different values of the parameters of DE-ITL distri-
bution

θ α Mean Variance ID Skewness Kurtosis
0.2 2.9444 31.2254 10.6050 3.0016 11.2373
0.5 2.9900 29.5553 9.8847 2.7944 10.7078
0.7 0.5 2.6522 25.194 9.4993 2.9693 12.275
0.9 2.2725 20.5076 9.0242 3.2563 14.8058
0.2 3.2715 34.9489 10.6828 3.0461 10.6652
0.5 4.4729 39.2696 8.7794 2.3641 7.6277
0.7 0.99 4.2797 36.123 8.4405 2.3103 7.8226
0.9 3.8267 31.1176 8.1317 2.4300 8.8669
0.2 2.7920 33.7637 12.0930 3.2830 11.9422
0.5 5.1775 43.1468 8.3335 2.3461 7.0173
0.7 1.5 5.3469 41.4819 7.7581 2.1337 6.5730
0.9 4.9875 37.3306 7.4848 2.1235 6.9708
5 1.6188 1.4269 0.8815 2.9362 24.2061
10 0.4705 0.1317 0.2799 0.8380 3.7801
15 10 0.1274 0.1143 0.8972 2.3630 7.1392
20 0.0313 0.0305 0.9744 5.4250 30.7887

4.1.3. The order statistics of the discrete exponentiated inverted Topp-Leone distribution

The cdf of the ith order statistic of the DE-ITL is given by

Fi:n (x; θ, α) =
n∑

r=i

(
n
r

) n−r∑
j=0

(
n − r

j

)
(−1) j

[
1 −

(1 + 2(x + 1))θ

(1 + (x + 1))2θ

]α(r+ j)

. (37)

Special cases
Case I: if i = 1 in (37) one can obtain the distribution function of the first order statistics, as given
below

F1 (x; θ, α) = 1 − [1 − F (x; θ, α)]n

= 1 −
[
1 −

[
1 −

(1 + 2(x + 1))θ

(1 + (x + 1))2θ

]α]n

,
(38)

Case II: if i = n in (37) one can get the distribution function of the largest order statistics, as follows:

Fn (x; θ, α) = [F (x; θ, α)]n =

[
1 −

(1 + 2(x + 1))θ

(1 + (x + 1))2θ

]nα

. (39)
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the pmf of the ith order statistics, is

P
(
X(i) = x

)
=

n!
(i − 1)! (n − i)!

n−i∑
j=0

(
n − i

j

)
(−1)

j ∫ F(x)

F(x−1)
vi+ j−1dv

=
n!

(i − 1)! (n − i)!

n−i∑
j=0

(
n − i

j

)
(−1)

j (
1

i + j

)

×

[1 − (1 + 2(x + 1))θ

(1 + (x + 1))2θ

]α(r+ j)

−

[
1 −

(1 + 2(x))θ

(1 + x)2θ

]α(r+ j) .
(40)

The pmf of the smallest order statistics is obtained by substituting i = 1 in (40) as follows:

P
(
X(1) = x

)
=

n!
(1 − 1)!(n − 1)!

∫ F(x)

F(x−1)
v1−1(1 − v)n−1+1dv

=

[
(1 + 2(x + 1))θ

(1 + (x + 1))2θ

]nα

−

[
(1 + 2(x))θ

(1 + x)2θ

]nα

,

(41)

also, the pmf of the largest order statistic is obtained by substituting i = n in (40) as follows:

P
(
X(n) = x

)
=

[
1 −

(1 + 2(x + 1))θ

(1 + (x + 1))2θ

]nα

−

[
1 −

(1 + 2(x))θ

(1 + x)2θ

]nα

(42)

4.1.4. Rényi entropy

The Rényi entropy and Shannon entropy for the DE-ITL can be obtained using (11) and (12) as given
bellow

Iη (x) =
1

1 − η
log

∑
x

[[
1 −

(1 + 2(x + 1))θ

(1 + (x + 1))2θ

]α
−

[
1 −

(1 + 2x)θ

(1 + x)2θ

]α]η
, x = 0, 1, 2, . . . ., (43)

and

I (X) = −log
[[

1 −
(1 + 2(x + 1))θ

(1 + (x + 1))2θ

]α
−

[
1 −

(1 + 2x)θ

(1 + x)2θ

]α]∑
x

[[
1 −

(1 + 2(x + 1))θ

(1 + (x + 1))2θ

]α
−

[
1 −

(1 + 2x)θ

(1 + x)2θ

]α]
,

x = 0, 1, 2, . . . . (44)

The Shannon entropy is a special case of the Rényi entropy when η→ 1.

4.1.5. Mean residual lifetime function, mean time to failure, mean time between failure, and
availability

The mean residual lifetime function, mean time to failure, mean time between failure, and availability
for the DE-ITL can be obtained from (13)-(16), respectively, as follows:

MRL (x) =
1

1 −
[
1 − (1 + 2x0)θ(1 + x0)−2θ

]α ∞∑
k=x0+1

1 −
[
1 − (1 + 2k)θ(1 + k)−2θ

]α
, (45)
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the MTBF is
MT BF =

−x

log
[
1 −

[
1 − (1 + 2x)θ(1 + x)−2θ

]α] . x = 1, 2, . . . . , (46)

then the MTTF is given by

MTT F =
∞∑

x=1

1 −
[
1 − (1 + 2x)θ(1 + x)−2θ

]α
. x = 1, 2, . . . . , (47)

and Av is considered as being the probability that the component is successful at time t,

Av =
MTT F
MT BF

=

∑∞
x=1 1 −

[
1 − (1 + 2x)θ(1 + x)−2θ

]α
log

[
1 −

[
1 − (1 + 2x)θ(1 + x)−2θ

]α]
−x

. (48)

5. Maximum likelihood estimation

his section is devoted to estimate the vector of the unknown parameters, φ = (θ, α), sf, hrf and ahrf
of the DE-ITL (θ, α) distribution, under Type II censored samples, also the confidence intervals of the
parameters α, θ, sf, hrf and ahrf are derived.

Suppose that X1, X2, . . . , Xr is a Type II censored sample of size r obtained from a life-test of n
items whose lifetimes have a DE-ITL (θ, α) distribution. Then the likelihood function is

L
(
φ;x

)
∝

 r∏
i=1

P (xi)

 [
S

(
x(r)

)]n−r, (49)

where P (x) and S (x) are given respectively by (24) and (26).

L
(
φ;x

)
∝

 r∏
i=1

[
1 −

(1 + 2(xi + 1))θ

(1 + (xi + 1))2θ

]α
−

[
1 −

(1 + 2xi)θ

(1 + xi)2θ

]α
×

[
1 −

[
1 −

(1 + 2xr)θ

(1 + xr)2θ

]α]n−r

, (50)

L
(
φ;x

)
∝

 r∏
i=1

[ui1]α − [ui2]α
 × [1 − [ur]α]n−r,

where
ui1 =

[
1 − (1+2(xi+1))θ

(1+(xi+1))2θ

]
, ui2 =

[
1 − (1+2xi)θ

(1+xi)2θ

]
, and ur =

[
1 − (1+2xr)θ

(1+xr)2θ

]
.

The natural logarithm of the likelihood function is given by

ℓ ≡ lnL
(
φ;x

)
∝ ln

 r∏
i=1

[
1 −

(1 + 2(xi + 1))θ

(1 + (xi + 1))2θ

]α
−

[
1 −

(1 + 2xi)θ

(1 + xi)2θ

]α
+ (n − r) ln

[
1 −

[
1 −

(1 + 2xr)θ

(1 + xr)2θ

]α]
, (51)

then

ℓ ≡ lnL
(
φ;x

)
∝

r∑
i=1

ln
[[

1 −
(1 + 2(xi + 1))θ

(1 + (xi + 1))2θ

]α
−

[
1 −

(1 + 2xi)θ

(1 + xi)2θ

]α]
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+ (n − r) ln
[
1 −

[
1 −

(1 + 2xr)θ

(1 + xr)2θ

]α]

∝

r∑
i=1

ln [[ui1]α − [ui2]α]+ (n − r) ln [1 − [ur]α] , (52)

where
ui1 =

[
1 − (1+2(xi+1))θ

(1+(xi+1))2θ

]
, ui2 =

[
1 − (1+2xi)θ

(1+xi)2θ

]
, and ur =

[
1 − (1+2xr)θ

(1+xr)2θ

]
Considering the two parameters, θ and α are unknown and differentiating (59), with respect to α and θ,
one obtains

∂ℓ

∂a
=

r∑
i=1

{
[ui1]αln (ui1) − [ui2]αln (ui2)

[[ui1]α − [ui2]α]

}
− (n − r)

{[ur]αln [ur]}
[1 − [ur]α]

, (53)

and
∂ℓ

∂?
=

r∑
i=1

{
[α [ui1]α−1úi1] − [α [ui2]α−1úi2]

[[ui1]α − [ui2]α]

}
− (n − r)

[α [ur]α−1úr]
1 − (ur)

, (54)

where

úi1 =

−

{[
(1 + (xi + 1))2θ

]
∗
[
(1 + 2(xi + 1))θ

]
∗ ln [(1 + 2(xi + 1))]

}
−

{[
(1 + 2(xi + 1))θ

]
∗
[
(1 + (xi + 1))2θ

]
∗ ln [(1 + (xi + 1))] ∗ 2

}
[
(1 + (xi + 1))2θ

]2 ,

úi2 = −

{[
(1 + (xi))2θ

]
∗
[
(1 + 2(xi))θ

]
∗ ln [(1 + 2(xi))]

}
−

{[
(1 + 2(xi)θ

]
∗
[
(1 + (xi))2θ

]
∗ ln [(1 + (xi))] ∗ 2

}
[
(1 + (xi))2θ

]2 ,

and

úr = −

{[
(1 + xr)2θ

]
∗
[
(1 + 2xr)θ

]
∗ ln [(1 + 2xr)]

}
−

{[
(1 + 2xr)θ

]
∗
[
(1 + xr)2θ

]
∗ ln [(1 + xr)] ∗ 2

}
[
(1 + xr)2θ

]2 ,

(55)
Then the ML estimates of the parameters, denoted by α̂ and θ̂ can be derived by equating (53) and
(54) to zeros and solving numerically.
Depending on the invariance property, the ML estimators of S (x) , h(x) and h1(x)can be obtained by
replacing α and θ with their corresponding ML estimators α̂ and θ̂, respectively, in (26) - (28), as
given below

Ŝ ML (x; θ, α) = 1 −
[
1 − (1 + 2x)̂θ(1 + x)−2̂θ

]α̂
, x = 0, 1, 2, . . . , (56)

ĥML (x; θ, α) =

[
1 − (1+2(x+1))̂θ

(1+(x+1))2̂θ

]α̂
−

[
1 − (1+2x)̂θ

(1+x)2̂θ

]α̂
1 −

[
1 − (1 + 2x)̂θ(1 + x)−2̂θ

]α̂ , x = 0, 1, 2, . . . , (57)
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and

ĥ1ML (x; θ, α) = ln

 1 −
[
1 − (1 + 2x)̂θ(1 + x)−2̂θ

]α̂
1 −

[
1 − (1 + 2(x + 1))̂θ(1 + (x + 1))−2̂θ

]α̂
 . x = 0, 1, 2, . . . . (58)

When the sample size is large and the regularity conditions are satisfied, the asymptotic distribution of
the ML estimators is φ̂ ∼ Bivariate Normal

(
φ, I−1x

(
φ
))
, where φ = (θ, α) , φ̂ =

(̂
θ, α̂

)
, and I−1

(
φ
)

is the asymptotic variance covariance matrix of the ML estimators α and θ, which is the inverse of the
asymptotic observed Fisher information matrix. The asymptotic observed Fisher information matrix
can be obtained as follows:

I
(
φ
)
≈ −

[
∂2ℓ

∂ωi∂ω j

]
, i, j = 1, 2, , . . . , (59)

The asymptotic 100 (1 − α) % confidence interval for θ, α, S ML(x) , hML(x) and h1ML(x) are given,
respectively, by
Lω = ω̂ − Z α

2
σω̂ . and Uω = ω̂ + Z α

2
σω̂ . (59)

where Lω and Uω are the lower and upper limits respectively, ω̂ is θ̂, α̂, Ŝ (x) , ĥ(x) or ĥ1 (x) , where
Z is the 100 %

(
1 − α2

)
standard normal percentile, (1 − α) is the confidence coefficient and σω̂ is the

standard deviation.

6. Numerical Illustration

This section aims to investigate the precision of the theoretical results based on simulated and real
data.

6.1. Simulation study

In this subsection, a simulation study is conducted to illustrate the performance of the presented ML
estimates based on generated data from the DE-ITL distribution. The ML averages of the parameters,
sf, hrf and ahrf based on complete sample and Type II censoring are computed. Moreover, confidence
intervals of the parameters, sf, hrf and ahrf are calculated. The simulation study is performed using
Mathematica11.
Tables 2 displays the averages, relative absolute biases (RABs), mean squared error (MSE) and vari-
ances, for the parameters, sf, hrf and ahrf estimates, also 95% confidence intervals under three levels
of r

n × 100 percentage of uncensored observations Type II censoring 60%, 80% and 100%. Table 3
presents the same computational results, but for different population parameter values from the DE-
ITL distribution for different samples of size n=30, 60 and 120 and number of replications (NR) =
5000.
The RABs, variances of the ML estimates of the parameters, sf, hrf and ahrf are computed as follows:

Table 2: ML averages, relative absolute biases, mean squared errors, variances of ML estimates,
95% confidence intervals of the parameters, survival, hazard rate and alternative hazard rate functions
at (X0 = 1) from DE-ITL distribution for different samples sizes n, censoring size r (NR = 5000, θ =
0.99, α = 1.5).

Table 3: ML averages, relative absolute biases, mean squared errors, variances of ML estimates,
95% confidence intervals of the parameters, survival, hazard rate and alternative hazard rate functions
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at (x0 = 1) from DE-ITL distribution for different samples size n, censoring size r (NR = 5000, θ =
0.6, α = 1.5)

6.2. Concluding remarks

From Tables 2 and 3 of simulation study one can observe that:

1. The RABs, MSEs, and variances of the ML averages of the ML estimates of the parameters, sf,
hrf, and ahrf perform better as n increases, i.e., the RABs, MSEs, and variances decrease when the
sample size n increases, as expected. This is indicative of the fact that the estimates are consistent
and approach the population parameter values as the sample size increases. Also, the lengths of
the confidence intervals get shorter when the sample size increases.

2. The RABs, MSEs, and variances of the ML estimates of the parameters, sf, hrf, and ahrf decrease
when the level of censoring decreases, which is expected since decreasing the level of censoring
means that more information is provided by the sample and hence increases the accuracy of the
estimates.

3. In general, all the results of RABs, MSEs and variances perform better when n and r are larger;
RABs, MSEs and variances obtained for complete sample sizes, are less than the corresponding
results for censored samples.

6.3. Applications

In this subsection, the importance and applicability of the DE-ITL distribution is discussed by using
two real data sets. The proposed distribution is compared with different competitive distributions such
as discrete Marshall-Olkin inverted Topp-Leone (DMOITL) introduced by Almetwally et al. [6], dis-
crete Half Logistic (DHL) presented by Hegazy et al. [23], discrete generalized inverted exponential
(DGIE) proposed by AbdElaziz et al. [1] and discrete generalized Rayleigh (DGR) obtained by Ala-
matsaz et al. [3]. The fitted probability distributions are compared using some criteria, Akaike Infor-
mation Criterion (AIC), Akaike Information Criterion with Correction (AICC), Bayesian Information
Criterion (BIC) and Hannon-Quinn Information Criterion (HQIC). The best distribution corresponds
to the highest p-value and the lowest values of AIC, AICC, BIC and HQIC.
Where AIC = −2logL + 2k, AICC = AIC + 2k(k+1)

n−k−1 , BIC = −2logL + klogn ,
and
HQIC = −2logL + 2k log (log (n)) , where k is the number of the parameters, n is the sample size and
L is the maximized value of the likelihood function for the estimated model. Tables 4 and 5 display the
values of p-value, AIC, BIC, AICC and HQIC for the first and second data sets.
Kolmogorov-Smirnov (K-S) goodness of fit test is applied to check the validity of the fitted model.
The p-values are respectively 0.1674 and 0.5099. It shows that DE-ITL fits the data very well.
Data set I: The first data set was given by Lawless [33]. It represents remission times, in weeks, for
20 leukemia patients randomly assigned to a specific treatment.
The data is: 1, 3, 3, 6, 7, 7, 10, 12, 14, 15, 18, 19, 22, 26, 28, 29, 34, 40, 48, 49.
Table 4 presents the ML estimates and corresponding standard errors (SEs), p-value, −2lnL, AIC, BIC,
AICC and HQIC. It is observed that all models fit the data set. However, the proposed distribution has
highest p-value and smallest values of −2lnL, AIC, BIC, AICC. Hence, the DE-ITL distribution is the
best fit for this data compared with other distributions considered here.
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Table 2. Some resumes of ML for parameters, survival, hazard rate and alternative hazard
rate functions: (θ = 0.99, α = 1.5)

n r parameter Average RAB MSE Variance UL LL Length

30

18

θ 1.1334 0.1449 0.0911 0.0705 1.6541 0.6128 1.0412
α 2.1878 0.4585 0.5168 0.0437 2.5976 1.7779 0.8197

S (x0) 0.9390 0.0711 0.0040 0.0001 0.9643 0.9136 0.0507
h(x0) 0.1556 0.1957 0.0029 0.0015 0.2318 0.0794 0.1524
h1(x0) 0.1702 0.2084 0.0041 0.0021 0.2609 0.0795 0.1813

24

θ 1.1088 0.1200 0.0655 0.0514 1.5532 0.6643 0.8889
α 2.1675 0.4451 0.4810 0.0356 2.5375 1.7979 0.7395

S (x0) 0.9398 0.0720 0.0041 0.0001 0.9620 0.9172 0.0451
h(x0) 0.1521 0.2136 0.0028 0.0010 0.2171 0.0872 0.1299
h1(x0) 0.1658 0.2288 0.0039 0.0015 0.2425 0.0892 0.1533

30

θ 1.0762 0.0871 0.0486 0.0411 1.4739 0.6787 0.7951
α 2.1338 0.4225 0.4330 0.0312 2.4803 1.7872 0.6932

S (x0) 0.9403 0.0726 0.0041 0.0001 0.9623 0.9182 0.0441
h(x0) 0.1483 0.2333 0.0029 0.0009 0.2072 0.0895 0.1176
h1(x0) 0.1612 0.2503 0.0041 0.0012 0.2302 0.0922 0.1380

60

36

θ 1.1216 0.1329 0.0564 0.0391 1.5093 0.7339 0.7754
α 2.1719 0.4479 0.4739 0.0224 2.4653 1.8785 0.5868

S (x0) 0.9390 0.0712 0.0039 0.0000 0.9574 0.9207 0.0364
h(x0) 0.1543 0.2025 0.0023 0.0008 0.2112 0.0974 0.1137
h1(x0) 0.1682 0.2179 0.0033 0.0011 0.2355 0.1009 0.1346

48

θ 1.0980 0.1091 0.0385 0.0269 1.4195 0.7761 0.6430
α 2.1528 0.4352 0.4437 0.0174 2.4119 1.8939 0.5180

S (x0) 0.9395 0.0721 0.0040 0.0000 0.9560 0.9237 0.0322
h(x0) 0.1510 0.2195 0.0023 0.0005 0.1982 0.1037 0.0945
h1(x0) 0.1641 0.2368 0.0034 0.0008 0.2198 0.1084 0.1113

60

θ 1.0780 0.0889 0.0284 0.0206 1.3598 0.7963 0.5635
α 2.1301 0.4201 0.4121 0.0149 2.3695 1.8904 0.4794

S (x0) 0.9400 0.0723 0.0040 0.0000 0.9554 0.9245 0.0308
h(x0) 0.1488 0.2307 0.0024 0.0004 0.1907 0.1069 0.0837
h1(x0) 0.1614 0.2491 0.0035 0.0006 0.2107 0.1123 0.0981

120

72

θ 1.1187 0.1300 0.0372 0.0206 1.4006 0.8368 0.5638
α 2.1632 0.4424 0.4522 0.0118 2.3770 1.9501 0.4264

S (x0) 0.9387 0.0708 0.0039 0.0000 0.9518 0.9252 0.0263
h(x0) 0.1543 0.2024 0.0019 0.0004 0.1955 0.1130 0.0825
h1(x0) 0.1679 0.2191 0.0028 0.0006 0.2167 0.1191 0.0975

96

θ 1.0963 0.1079 0.0253 0.0139 1.3284 0.8652 0.4631
α 2.1460 0.4306 0.4262 0.0088 2.3303 1.9617 0.3686

S (x0) 0.9394 0.0717 0.0039 0.0000 0.9510 0.9278 0.0232
h(x0) 0.1512 0.2181 0.0020 0.0003 0.1853 0.1172 0.0681
h1(x0) 0.1642 0.2361 0.0030 0.0004 0.2043 0.1241 0.0802

120

θ 1.0744 0.0853 0.0174 0.0103 1.2736 0.8752 0.3982
α 2.1220 0.4146 0.3945 0.0074 2.2914 1.9522 0.3385

S (x0) 0.9392 0.0720 0.0040 0.0000 0.9508 0.9286 0.0222
h(x0) 0.1487 0.2314 0.0022 0.0002 0.1785 0.1189 0.0595
h1(x0) 0.1611 0.2505 0.0032 0.0003 0.1961 0.1262 0.0698
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Table 3. Some resumes of ML for parameters, survival, hazard rate and alternative hazard
rate functions: (θ = 0.6, α = 1.5)

n r parameter Average RAB MSE Variance UL LL Length

30

18

θ 0.7449 0.2415 0.0533 0.0323 1.0974 0.3923 0.7050
α 2.1252 0.4168 0.4553 0.0643 2.6225 1.6280 0.9944

S (x0) 0.9695 0.0348 0.0011 0.0000 0.9812 0.9577 0.0235
h(x0) 0.0829 0.2141 0.0008 0.0003 0.1188 0.0470 0.0718
h1(x0) 0.0867 0.2219 0.0010 0.0003 0.1259 0.0477 0.0782

24

θ 0.7082 0.1804 0.0344 0.0514 1.0034 0.4130 0.5903
α 2.0627 0.3751 0.3691 0.0356 2.5144 1.6111 0.9033

S (x0) 0.9690 0.0343 0.0010 0.0001 0.9819 0.9561 0.0257
h(x0) 0.0806 0.2363 0.0008 0.0010 0.1117 0.0494 0.0623
h1(x0) 0.0841 0.2452 0.0010 0.0015 0.1180 0.0503 0.0677

30

θ 0.6805 0.1341 0.0233 0.0168 0.9348 0.4261 0.5086
α 2.0084 0.3389 0.3048 0.0463 2.4302 1.5865 0.8436

S (x0) 0.9681 0.0334 0.0010 0.0001 0.9834 0.9529 0.0304
h(x0) 0.0794 0.2476 0.0009 0.0002 0.1090 0.0497 0.0592
h1(x0) 0.0828 0.2570 0.0010 0.0002 0.1150 0.0507 0.0643

60

36

θ 0.7405 0.2345 0.0364 0.0166 0.9932 0.4881 0.5051
α 2.1088 0.4059 0.4013 0.0306 2.4518 1.7659 0.6858

S (x0) 0.9691 0.0344 0.0010 0.0000 0.9771 0.9611 0.0159
h(x0) 0.0831 0.2121 0.0006 0.0001 0.1094 0.0568 0.0525
h1(x0) 0.0869 0.2207 0.0008 0.0002 0.1155 0.0583 0.0572

48

θ 0.7022 0.1704 0.0221 0.0116 0.9141 0.4903 0.4234
α 2.0456 0.3637 0.3247 0.0269 2.3676 1.7236 0.6439

S (x0) 0.9688 0.0341 0.0010 0.0000 0.9777 0.9598 0.0177
h(x0) 0.0805 0.2370 0.0007 0.0001 0.1029 0.0581 0.0447
h1(x0) 0.0840 0.2466 0.0009 0.0001 0.1083 0.0597 0.0486

60

θ 0.6773 0.1289 0.0144 0.0084 0.8577 0.4969 0.3607
α 1.9939 0.3293 0.2677 0.0237 2.2959 1.6919 0.6039

S (x0) 0.9679 0.0332 0.0009 0.0000 0.9784 0.9575 0.0208
h(x0) 0.0796 0.2454 0.0007 0.0001 0.1004 0.0588 0.0416
h1(x0) 0.0830 0.2553 0.0009 0.0001 0.1056 0.0604 0.0451

120

72

θ 0.7353 0.2251 0.0268 0.0085 0.9166 0.5540 0.3625
α 2.0937 0.3958 0.3689 0.0164 2.3453 1.8420 0.5033

S (x0) 0.9688 0.0341 0.0010 0.0000 0.9743 0.9633 0.0110
h(x0) 0.0831 0.2120 0.0005 0.0001 0.1015 0.0647 0.0368
h1(x0) 0.0868 0.2210 0.0007 0.0001 0.1069 0.0668 0.0401

96

θ 0.6995 0.1659 0.0156 0.0056 0.8471 0.5520 0.2950
α 2.0334 0.3558 0.2977 0.0128 2.2563 1.8111 0.4451

S (x0) 0.9685 0.0337 0.0010 0.0000 0.9747 0.9622 0.0125
h(x0) 0.0808 0.2344 0.0006 0.0001 0.0966 0.0649 0.0316
h1(x0) 0.0843 0.2442 0.0008 0.0001 0.1015 0.0670 0.0344

120

θ 0.6753 0.1255 0.0097 0.0040 0.7998 0.5507 0.2490
α 1.9880 0.3253 0.2489 0.0107 2.1917 1.7843 0.4073

S (x0) 0.9680 0.0332 0.0009 0.0000 0.9751 0.9608 0.0142
h(x0) 0.0795 0.2460 0.0007 0.0001 0.0942 0.0648 0.0294
h1(x0) 0.0829 0.2563 0.0008 0.0001 0.0989 0.0669 0.0319
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Table 4. ML estimates, SEs and goodness of fit for various models fitted for data set I

Models Estimates SEs P-Value AIC BIC AICC HQIC
θ=2.1868 0.1949

DE-ITL 0.1674 170.038 174. 744 176.03 174.038
α=2.3121 0.1969
θ=0.7016 1.1020

DMOITL 0.08 200.422 204.422 206.413 205.128
α=0.3327 1.1081

DHL θ=7.6156 0. 9780 .0810 172.465 174.918 175.918 175.141
λ=3.9563 1.0422

DGLE 0.0793 172.465 176.465 178.457 177.171
α=0.7242 1.1016
λ=0.0177 1.1147

DGR 0.0778 170.779 174.779 176.77 175.485
α=0.1871 1.1115

Figure 4 exhibits TTT plot of data set I which indicates that this data has an increasing- shaped
hazard rate. The fitted pmf, P-P and Q-Q plots indicate that the DE-ITL distribution provides the best
fit for this data.
Data set II

The second dataset was presented by Lawless [33]. It represents the failure times in minutes for
Epoxy Insulation Specimens at the voltage level 57.5 KV. For ease of modelling, the whole dataset is
divided by 100.
The data are: 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 7, 9, 10.
Table 5 presents the ML estimates and corresponding SEs, p-value, −2lnL, AIC, BIC and AICC for the
data set II. It is observed that all models fit the data set. However, the DE-ITL distribution has highest
p-value and the smallest values of −2lnL, AIC, BIC, AICC. Hence, the DE-ITL distribution is the best
fit for this data compared with other distributions considered here.
Figure 5 shows that TTT plot of real data set II indicates that this data has an increasing-shaped hazard
rate. The fitted pmf, P-P and Q-Q plots indicate that the DE-ITL distribution fits the data very well.
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Figure 4. TTT, fitted pmf, P-P and Q-Q plots of the DE-ITL distribution for data set I

Table 5. ML estimates, SEs and goodness of fit for various models fitted for the data set II

Models Estimates SEs P-Value AIC BIC AICC HQIC
θ=.6221 0.4276

DE-ITL 0.8053 98.6342 102.634 104.626 103.34
α=2.7032 0.3844
θ=0.4220 3.498

DMOITL 0.1485 121.484 125.484 127.475 126.19
α=0.5520 3.4873

DHL θ=24.5701 1.0259 .0.3086 156.253 158.253 159.249 158.475
λ=14.8494 0.7488

DGLE 0.1587 103.236 107.236 109.228 107.942
α=9.5671 0.5503
λ=0.0993 0.4953

DGR 0.0272 102.747 106.747 108.739 107.453
α=0.6886 0.4690
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Figure 5. The fitted pdf, PP-plot, QQ-plot and TTT-plot for the sconed data set

7. Conclusion

In this paper, a new family of discrete distributions called discrete exponentiated-G family of
distributions is proposed. Several important statistical characteristics are investigated. Discrete expo-
nentiated inverted Topp – Leone distribution as a sub model of the proposed family is studied in detail.
It is explored that the discrete exponentiated-G family can be used for modeling count and lifetime
data. The discrete inverted Topp – Leone distribution can model a negatively skewed or a positively
skewed and the hrf can take different shapes. Further, it is appropriate for modeling both over- and
under-dispersed data. The ML method was used for estimating the family parameters. A simulation
study was carried out to evaluate the performance and accuracy of the estimators. Finally, the flexibility
and applicability of the discrete exponentiated-G family in real life was illustrated by applying to real
datasets. The discrete exponentiated inverted Topp – Leone distribution appears to be more suitable
for modeling real data sets and is a better alternative to some other distributions. We wish the proposed
model is applied to a wider range of applications in medicine, engineering, and other fields of research
fields.
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