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Abstract: The study motivates the estimation problem of short dynamic panel data models in the
presence of higher frequency regressors where it is required to weigh the regressor series to be at the
same frequency of the dependent variable. With the focus on First Difference Generalized Method
of Moments (DIF GMM) and System Generalized Method of Moments (SYS GMM) estimators, short
dynamic panel data models were discussed extensively in two cases the first is the balanced case and the
second is the mixed frequency case where there is a higher frequency regressor(s). The weighting of the
higher frequency regressor can be carried out using Mixed Data Sampling (MIDAS). In the presence
of a higher frequency regressor and by assuming AR (1) of the lower frequency time dimension as a
data generating process for the regressor, the initial conditions satisfying mean stationarity required for
SYS GMM MIDAS were derived. Mone Carlo simulations were carried out where the results showed
that using SYS GMM MIDAS exploited more power than DIF GMM MIDAS. In addition, using the
average for weighting as well as testing the significance of the higher frequency regressor parameter
resulted in low power.
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1. Introduction

The panel data set has two dimensions one is cross-sectional and the other is for time that makes
it more informative and gives accurate inference of model parameters. In addition, it can be used
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to model dynamic processes by adding the lagged values of the dependent variable, the explanatory
variable(s) or both. For short dynamic panel data models where the number of cross-sectional units
(N) is higher than the number of time points (T) i.e., N>T, dynamics can be accounted for by adding a
lagged dependent variable however the dependent variable becomes a function of the individual specific
effects. This endogeneity problem makes the least-squares estimator inconsistent. Using estimators
based on generalized method of moments estimator can produce more consistent estimates such as the
First Difference GMM (FID GMM) introduced by [1] and System GMM (SYS GMM) proposed by
[2].

One kind of unbalanced data is when the frequency of the regressor(s) is higher than the frequency
of the dependent variable known as mixed frequency e.g., weekly vs. daily, quarterly vs. monthly,
or yearly vs. monthly data, . . . etc. Mixed frequency data is one of the most challenging problems in
econometrics where it is required to aggregate the higher frequency regressor to have the same fre-
quency as the dependent variable. The problem with temporal aggregation is the anticipated loss of
information such that the dynamics of the aggregate model becomes different from that in the unbal-
anced data set i.e., specification bias. One way to deal with mixed frequency data is using mixed data
sampling techniques (MIDAS) introduced by [3] where a parsimonious lag polynomials are used to
weight the higher frequency regressor(s) series preventing parameters proliferation. The advantage of
MIDAS is that it preserves the data generating process as possible with fewer number of parameters
required to estimate the model. In case of small difference between the frequency of the dependent
variable and the regressor(s) e.g., quarterly vs. monthly data, the unrestricted MIDAS (U-MIDAS)
proposed by [4] can be used where no conditions are imposed on the weight parameters. Applying MI-
DAS to short dynamic panel with mixed frequency data was introduced by [5] where a two parameters
exponential Almon lag function is used to parametrize the higher frequency regressor series while the
First Difference GMM serves as estimation method.

The estimation is carried out numerically where a grid search is constructed to make inference about
the exponential Almon lag parameters by inverting the Sargan test of overidentifying restrictions such
that the set of all estimates with Sargan test p-values greater than a given level of significance form a
confidence interval for the model parameters from which the one with highest p-value is regarded as
point estimate whereas an empty set signals a lack of fit. This study relies on the approach used in
[5] to parameterize the higher frequency regressor series but it applies the SYS GMM as estimation
method alongside with DIF GMM while comparing between these two methods using Monte Carlo
simulation in the sense of their power and empirical size.

The study has the following structure: section 2 provides a literature review about short dynamic
panel data models in balanced and mixed frequency cases. With focus on the first difference and system
GMM estimators, balanced short dynamic panel data models were extensively discussed in section 3,
while including a higher frequency regressor(s) in short dynamic panel data models was represented in
section 4. A simulation study was conducted and illustrated in section 5. Finally, concluding remarks
were presented in section 6.

2. Literature Review

Reference [6] put forth an Ordinary Least Squares (OLS) estimator to address short dynamic panel
data issues. However, the OLS estimator becomes biased and inconsistent due to the endogeneity
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problem. To tackle this, they transformed the model using a within transformation, applying the Least
Squares Dummy Variables (LSDV) estimator, which still exhibits bias and consistency reliance on
a large T value. They also introduced a Maximum Likelihood (ML) estimator, but its consistency
depends on initial conditions. They later introduced the Instrumental Variables (IV) estimator after
differencing the model, which is consistent regardless of initial conditions but not necessarily efficient.
[7] introduced the Limited Information Maximum Likelihood (LIML) to address inconsistency of vari-
ance that arises in applying maximum likelihood to short dynamic panel data. [1] suggested enhancing
the IV approach with additional instruments using the generalized method of moments, known as First
Difference GMM (DIF GMM), and proposed three specification tests to ensure exogeneity. [8] intro-
duced a method involving IV or GMM techniques to estimate the inverse covariance matrix, leading
to a transformed model. [9] suggested a non-singular transformation and GMM method, which aligns
with LIML. [10] found limitations in DIF GMM and proposed adding nonlinear moment conditions
for efficiency, while [11] presented a bias-corrected DIF GMM estimator.

Reference [2] addressed weak instruments by using lagged differences alongside levels as instru-
ments. [12] introduced Symmetrically Normalized GMM and LIML estimators, along with an overi-
dentification restrictions test. [13] introduced transformed maximum likelihood for consistency. [3]
introduced the MIDAS technique for mixed frequency data, using various lag polynomials for higher
frequency regressors. [14] proposed GLS and GMM estimators for common time effects in dynamic
panel data. [15] applied Quasi Maximum Likelihood (QML) method with time series heteroskedas-
ticity, and [16] used a factor analytical approach to handle incidental parameters. [17] proposed an
ssLIML estimator with better finite sample performance than GMM. [19] introduced TML and RML
estimators, warning of potential issues with inference based on maximum likelihood for small N or T.
[5] suggested MIDAS with mixed frequency data and different GMM estimators, including a parame-
terized exponential almon lag function. [20] applied the MIDAS approach to daily satellite data using
a Beta lag parameterization, outperforming daily averages in predicting monthly industrial production.

For robust estimation methods: Alvarez et al. [21] identified biases in within group OLS, one-step
GMM, and LIML estimators, and showed that GMM and LIML become asymptotically equivalent
with increasing T. They also proposed a heteroskedasticity-robust MLE estimator. Almongy et al. [22]
discussed robust estimation methods to estimate parameters of distributions models. Refrence [23]
discussed comparison between M estimation, S estimation, and MM estimation methods of robust
estimation with application and simulation. Alshenawy et al. [24] discussed OLS and GLM based
on robust estimation method to study of statistical and intelligent classification models for prediction
diabetes. Kamel et al. [25] discussed some computational methods by R program.

3. Balanced Short Dynamic Panel Data Model

This section is intended to illustrate the estimation of balanced short dynamic panel data models
using the first difference GMM (DIF GMM) and system GMM (SYS GMM). When the number of
cross-sectional units (N) is sufficiently large while the time dimension (T) is limited, the model ex-
pressing these data can be written in the form of panel AR (1) as follows:

yit = λ yi,t−1+ xit β+ µit (3.1)

uit = µi+νit

(3.2)
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Where t = 2, . . . , T, i = 1, . . . , N, λ is a scalar, xit: is 1×K vector of K observations for the explanatory
variables concerning specific individual (i) and time (t), β is a K × 1 vector of unknown coefficients,
and uit is the error term, µi unobservable individual specific effect, and νit is idiosyncratic error that
differs within individuals and throughout time.

Under the following assumptions:
A1. |λ|< 1.
A2. µi∼ IID

(
0, σ2

µ

)
.

A3. νit∼ IID
(
0, σ2

ν

)
.

A4. E
[
µixit

]
,0.

A5. E
[
νitµi

]
= 0

A6. E
[
νityit−j

]
= 0; j = 1, . . . , t − 1.

A7. xit is partitioned to
(
x(1)

it , x
(2)
it

)
where x(1)

it is 1×K1 vector of strictly exogenous explanatory vari-

ables such that E
[
x(1)

it

′

νis

]
= 0k1 ∀t , s; s = 1, . . . ,T and x(2)

it is 1×K2 vector of predetermined explanatory

variables satisfying E
[

x(2)
it

′

νis

]
= 0k2 , t≤s.

The model in (3.1) can be rewritten in matrix form as:

y = y−1+ X β + u (3.3)

Where y = [y12, . . . , yN2, . . . ,y1T, . . . ,yNT] is N(T − 1)×1 vector of observations for the dependent vari-
able, y−1= [y11, . . . , yN1, . . . ,y1,T−1, . . . ,yN,T−1] is N(T − 1)×1 vector of lagged observations for the
dependent variable, X is N(T − 1)×K matrix of observations for the explanatory variables, and
[u12, . . . , uN2, . . . ,u1T, . . . ,uNT] is N(T − 1)×1 vector of error terms that can be expressed using matrix
form as:

u = zµµ + ν

Where zµ = IN
⊗

lT−1 is N(T − 1)×N matrix, IN is identity matrix of order N, lT−1 is (T − 1)×1 vector
of ones, and ν= [ν12, . . . , νN2, . . . ,ν1T, . . . ,νNT] is a N(T − 1)×1 vector of idiosyncratic error terms.

Furthermore (3.3) can be rewritten as:

y = Zδ + u (3.4)

Where δ
′

=
[
λ β

′
]

is 1×(K + 1) vector of unknown coefficients, and Z =
[
y−1 X

]
is

N(T − 2)×(K + 1) matrix of observations for (K + 1) regressors.
The individual specific effects µi in (3.1) can be cancelled using the first difference transformation

yielding:
∆yit = λ∆yit−1+∆xit β+∆νit (3.5)

Where i = 1, . . . , N, t = 1, . . . , T.
The model in (3.5) can be written in matrix form as:

∆y =λ ∆y−1+∆X β+ ∆ν (3.6)

Where ∆y =[∆y13, . . . , ∆y1T, . . . ,∆yN3, . . . , ∆yNT ]
′

is N(T − 2)×1 vector of differenced observations
for the dependent variable,∆y−1 = [∆y12, . . . , ∆y1,T−1, . . . ,∆yN2, . . . , ∆yN,T−1 ]

′

is N(T − 2)×1 vector

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 2, 251–274



255

of lagged differenced observations for dependent variable, ∆X is N(T − 2)×K matrix of differenced
observations for K explanatory variables, ∆ν = [∆ν13, . . . , ∆ν1T, . . . ,∆νN3, . . . , ∆νNT ]

′

is N(T − 2)×1
vector of differenced idiosyncratic error terms.

Moreover (3.6) can be rewritten as:

∆y = ∆Z δ+ ∆ν (3.7)

Where ∆Z =
[
∆y−1 ∆X

]
is N(T − 2)×(K + 1) matrix of differenced observations for (K + 1) regres-

sors.

3.1. First Difference GMM

To get a consistent estimator for the model in (3.5), [1] tried to find instruments that are not cor-
related with the differenced error ∆νit; assuming the assumptions from A1 to A7 are satisfied these
instruments are:

When t=3:
yi3−yi2 = λ (yi2−yi1)+

(
x(1)

i3 −x(1)
i2

)
β(1)+

(
x(2)

i3 −x(2)
i2

)
β(2)+ (νi3−νi2)

yi1, x
(1)
i1 , x

(1)
i2 , x

(1)
i3 , x

(2)
i1 , x

(2)
i2 are valid instruments.

When t = 4:

yi4−yi3 = λ (yi3−yi2)+
(
x(1)

i4 −x(1)
i3

)
β(1)+

(
x(2)

i4 −x(2)
i3

)
β(2)+ (νi4−νi3)

yi1, yi2, x
(1)
i1 , x

(1)
i2 , x

(1)
i3 , x

(1)
i4 , x

(2)
i1 , x

(2)
i2 , x

(2)
i3 are valid instruments.

As a general case, when t = T:

yit−yi,t−1 = λ
(
yi,t−1−yi,T−2

)
+

(
x(1)

it −x(1)
i,t−1

)
β(1)+

(
x(2)

it −x(2)
i,t−1

)
β(2)+

(
νit−νi,t−1

)
yi1, . . . ,yi,T−2, x

(1)
i1 , . . . ,x

(1)
it , x

(2)
i1 , . . . ,x

(2)
iT−1 are valid instruments.

In case of predetermined explanatory variables:
When t=3:

yi3−yi2 = λ (yi2−yi1)+
(
x(2)

i3 −x(2)
i2

)
β(2)+ (νi3−νi2)

yi1, x
(2)
i1 , x

(2)
i2 are valid instruments.

When t = 4:
yi4−yi3 = λ (yi3−yi2)+

(
x(2)

i4 −x(2)
i3

)
β(2)+ (νi4−νi3)

yi1, yi2, x
(2)
i1 , x

(2)
i2 , x

(2)
i3 are valid instruments.

As a general case, when t = T:

yit−yi,t−1 = λ
(
yi,t−1−yi,T−2

)
+

(
x(2)

it −x(2)
i,t−1

)
β(2)+

(
νit−νi,t−1

)
yi1, .., yi,T−2, x

(2)
i1 , . . . ,x

(2)
iT−1 are valid instruments.

In DIF GMM, the matrix of valid instruments for each cross-sectional unit i can be partitioned into
three sub-matrices as follows:

Wi =
[
Wi

(
y
)
,Wi

(
x(1)

)
,Wi

(
x(2)

)]
(3.8)
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Such that:

Wi
(
y
)
=


yi1 0 0 . . . 0 . . . 0
0 [yi1 yi2] . . . 0 . . . 0
...

...
...
. . .

... . . .
...

0 0 0 . . . [yi1 . . . yi,T−2]

 (3.9)

Where Wi
(
y
)

is (T − 2)×(T − 2)(T − 1)/2 matrix.

Wi

(
x(1)

)
=


[x(1)

i1 x(1)
i2 x(1)

i3 ] 0k1 0k1 0k1 0k1 . . . 0k1 . . . 0k1

0k1 0k1 0k1 [x(1)
i1 x(1)

i2 x(1)
i3 x(1)

i4 ] . . . 0k1 . . . 0k1
...

...
...

...
...

...
...
. . .

... . . .
...

0k1 0k1 0k1 0k1 0k1 0k1 0k1 . . . [x(1)
i1 . . . x(1)

it ]

 (3.10)

Where Wi

(
x(1)

)
is (T − 2) × (T − 2)(T + 3)K1/2 matrix.

Wi

(
x(2)

)
=


[x(2)

i1 x(2)
i2 ] 0k2 0k2 0k2 . . . 0k2 . . . 0k2

0k2 0k2 [x(2)
i1 x(2)

i2 x(2)
i3 ] . . . 0k2 . . . 0k2

...
...

...
...

...
. . .

... . . .
...

0k2 0k2 0k2 0k2 0k2 . . . [ x(2)
i1 . . . x(2)

iT−1]

 (3.11)

Where Wi

(
x(2)

)
is (T − 2) × (T − 2)(T + 1)K2/2 matrix.

For all cross-sectional units, the matrix of valid instruments in DIF GMM is:

W =
[
W
′

1, . . . ,W
′

N

]′
(3.12)

Where W is N(T − 2)×P matrix.
The orthogonality conditions for the instrumental variables in the DIF GMM method are:

E
[
yi,t−s∆νit

]
= 0, t = 3, . . . , T , s = 2, . . . , T (3.13)

E
[

x(1)
is

′

∆νit

]
= 0, t = 3, . . . , T , s = 1, . . . , T (3.14)

E
[
x(2)

is

′

∆νit

]
= 0, t = 3, . . . , T , s = 1, . . . , T − 1 (3.15)

Alternatively, the orthogonality conditions in (3.13), (3.14) and (3.15) can be expressed using the
matrix of valid instruments in (3.12) as:

M =W
′

∆ν (3.16)

Where M is P×1 vector.
Lemma 3.1: The first step DIF GMM estimator of the differenced model in (3.7) is:

δ̂1 =

[
∆Z

′

W
(
W

(
IN

⊗
G
)

W
′
)−1

W
′

∆Z
]−1 [
∆Z

′

W
(
W

(
IN

⊗
G
)

W
′
)−1

]
(Arellano and Bond, 1991).

Proof:
To apply GMM on (3.7), the following quadratic formula (Q) has to be minimized:

Q = M
′

A M (3.17)
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Where (A) is P×P positive definite weighting matrix.
Using (3.7) and substituting in (3.16) and (3.17), the quadratic formula in (3.17) can be rewritten

as:

Q =
[(
∆y− ∆Z δ

)′
W

]
A

[
W
′ (
∆y− ∆Z δ

)]
(3.18)

Differentiating (3.18) with respect to δ and equating it with zero to obtain δ̂ as:

δ̂ =
(
∆Z

′

WAW
′

∆Z
)−1
∆Z

′

WAW
′

∆y (3.19)

The weighting matrix in (3.17) might be taken as the inverse of the covariance matrix for moments
conditions in (3.16) as follows:

A =
[
W
′

cov (∆ν) W
]−1

(3.20)

Where cov (∆ν) is a N(T − 2)×N(T − 2) matrix that can be defined as:

cov (∆ν) = σ2
ν

(
IN

⊗
G
)

(3.21)

Where G =



−2 −1 0 . . . 0 0 0
−1 2 −1 . . . 0 0 0
...
...
...
. . .

...
...
...

0 0 0 . . . −1 2 −1
0 0 0 . . . 0 −1 2


is a (T − 2)×(T − 2) matrix.

Using (3.21), the weighting matrix (A) in (3.20) can be rewritten as:

A =
1
σ2
ν

[
W
′
(
IN

⊗
G
)

W
]−1

(3.22)

Using (3.22) and substituting in (3.19), the first step DIF GMM estimator can be defined as follows:

δ̂1 =

[
∆Z

′

W
(
W
′
(
IN

⊗
G
)

W
)−1

W
′

∆Z
]−1
∆Z

′

W
(
W
′
(
IN

⊗
G
)

W
)−1

W
′

∆y (3.23)

To get the second step DIF GMM estimator, the residuals of the first-step estimation ∆̂ν is used
to estimate the covariance matrix in (3.21) where

(
W
′
(
IN

⊗
G
)

W
)

in (3.23) is replaced with VN =∑N
i=1 W

′

i∆̂νi∆̂νi
′

Wi as follows:

δ̂2 =
[
∆Z

′

WVN
−1W

′

∆Z
]−1
∆Z

′

WVN
−1W

′

∆y (3.24)

where VN is P×P matrix.
The covariance matrix of the second step DIF GMM estimator can be estimated as:

̂Cov
(̂
δ2

)
=

[
∆Z

′

WVN
−1W

′

∆Z
]−1

(3.25)
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3.2. System GMM

[2] noticed that DIF GMM might have poor finite sample bias especially in highly persistent series.
It suggested using System GMM (SYS GMM) estimator relying on two simultaneous equations the
first is the model based on levels in (3.1) and the second is the model based on first differences in (3.5).

Besides the orthogonality conditions defined in (3.13), (3.14), and (3.15) SYS GMM uses the fol-
lowing additional orthogonality conditions in case of strictly exogenous or predetermined explanatory
variables:

E
[
∆yi,t−1uit

]
= 0, t = 3, . . . , T (3.26)

E
[
∆xi,t−1uit

]
= 0, t = 3, . . . , T (3.27)

In SYS GMM, the matrix of valid instruments for each cross-sectional unit i is defined as:

W+
i =



Wi 0 0k 0 0k . . . 0 0k

0P [∆yi2 ∆xi2] 0 0k . . . 0 0k

0P 0 0k [∆yi3 ∆xi3] . . . 0 0k
...

...
...

...
...

. . .
...

...

0P 0 0k 0 0k . . . [∆yi,t−1 ∆xi,t−1]


Where 0P and 0k are 1×P and 1×K vectors of zeros respectively, W+

i is 2(T − 2)×P+ matrix, and
P+ = (T − 2) [(T + 1)+ (T + 5) K] /2.

The vector of differenced idiosyncratic error terms ∆ν defined in (3.6) and the last (T − 2) elements
in the vector of error terms u defined in (3.3) can be stacked together as follows:

ν
+
i = [∆νi3, . . . , ∆νit, ui3, . . . , uit]

′

Where ν+i is a 2(T − 2) × 1 vector.
For all cross-sectional units, the matrix of valid instruments in SYS GMM is:

W+ =

[
W+

′

1 , . . . ,W
+
′

N

]′
(3.28)

Where W+ is 2N(T − 2)×P+ matrix.
Similarly, the differenced idiosyncratic error terms and error terms ν+i can be defined for all cross-

sectional units as:

ν
+ =

[
ν
+
′

1 , . . . , ν
+
′

N

]′
Where ν+ is 2N(T − 2)×1 vector.

The orthogonality conditions for SYS GMM can be expressed using the matrix of valid instruments
in (3.28) as follows:

M+=W+
′

ν
+ (3.29)

Where M+ is P+×1 vector.

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 2, 251–274



259

The vector of differenced observations for the dependent variable ∆y in (3.7) and the vector of
observations for the dependent variable y in (3.4) can be stacked together as follows:

y+ = [∆y
′

y
′

]
′

Where y+ is 2N(T − 2)×1 vector.
The matrix of differenced observations for the regressors ∆Z in (3.7) and the matrix of observations

for the regressors Z in (3.4) can be stacked together as follows:

Z+ = [∆Z
′

Z
′

]
′

Where Z+ is 2N(T − 2)×(K + 1) matrix.
Lemma 3.2: The first step SYS GMM estimator of the model in (3.4) and the differenced model in

(3.7) is:

δ̂
+
1 =

[
Z+

′

W+
(
W+

(
IN

⊗
G+

)
W+

′)−1
W+

′

Z+
]−1

Z+
′

W+
(
W+

(
IN

⊗
G+

)
W+

′)−1
W+

′

y+

[2]
Proof:
To apply GMM on (3.4) and (3.7), the following quadratic formula must be minimized:

Q+ = M+
′

A+ M+ (3.30)

Where A+ is a P+×P+ positive definite weighting matrix.
Using (3.7) and (3.4) then substituting in (3.29) and (3.30), the quadratic formula in (3.30) can be

rewritten as:
Q+ =

[(
y+− Z+ δ

)′
W+

]
A+

[
W+

′ (
y+− Z+ δ

)]
(3.31)

Differentiating (3.31) with respect to δ and equating it with zero to obtain δ̂+ as:

δ̂
+
=

[
Z+

′

W+A+W+
′

Z+
]−1

Z+
′

W+A+W+
′

y+ (3.32)

The weighting matrix in (3.30) might be taken as the inverse of the covariance matrix for moments
conditions in (3.29):

A+ =
[
W+

′

cov
(
ν
+) W+

]−1
(3.33)

Where cov (ν+) is a 2N(T − 2)×2N(T − 2) matrix that can be defined as:

cov
(
ν
+) = σ2

ν

(
IN

⊗
G+

)
(3.34)

where G+ =
[

G 0T−2

0T−2 IT−2

]
is 2(T − 2)×2(T − 2) matrix, IN and IT−2 are identity matrices of order N

and (T − 2) respectively, and 0T−2 is a (T − 2)×(T − 2) matrix of zeros.
Using (3.34), the weighting matrix (A+) in (3.33) can be rewritten as:

A+ =
1
σ2
ν

[
W+

′ (
IN

⊗
G+

)
W+

]−1
(3.35)
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Using (3.35) and substituting in (3.32), the first step SYS GMM estimator can be defined as follows:

δ̂
+
1 =

[
Z+

′

W+
(
W+

(
IN

⊗
G+

)
W+

′)−1
W+

′

Z+
]−1

Z+
′

W+
(
W+

(
IN

⊗
G+

)
W+

′)−1
W+

′

y+ (3.36)

To find the second step SYS GMM estimator, the residuals of the first-step estimation ν̂+ is used to
estimate the covariance matrix in (3.34) where

(
W+

′
(
IN

⊗
G+

)
W+

)
in (3.36) is replaced with V+N =∑N

i=1 W+
i

′

ν+i ν
+
i

′

W+
i as follows:

δ̂
+
2 =

[
Z+

′

W+VN
−1W+

′

Z+
]−1

Z+
′

W+VN
−1W+

′

y+ (3.37)

where V+N is P+×P+ matrix.
The covariance matrix of the second step SYS GMM estimator can be estimated as:

̂Cov
(̂
δ+2

)
=

[
Z+

′

W+VN
−1W+

′

Z+
]−1

(3.38)

3.3. SARGAN Overidentifying Restrictions Test

The model is considered overidentified when the number of moment conditions is greater than the
number of parameters. In such case, a necessary test is needed to verify that orthogonality conditions
are met. [1] proposed using Sargan test of overidentifying restrictions in case of DIF GMM estimation
with the following null hypothesis and test statistic:

HoA: The instruments are uncorrelated with the error terms and the model is correctly specified.
H1A: The instruments are correlated with the error terms and the model is mis specified .

I = ∆ν̃
′

W Ṽ−1
N W

′

∆ν̃ ∼ χ2
(P−k−1)

Where ṼN =
∑N

i=1 W
′

i∆ν̃i∆ν̃i
′

Wi, ∆ν̃ are the differenced residuals resulting from the second step DIF
GMM estimator, W is the matrix of instruments in (12), P is the number of columns of W.

Similarly, Sargan’s test can be used in the case of SYS GMM under the following test statistic:

I+ = ν̃+′ W+ Ṽ+N
−1 W+′

ν̃
+ ∼ χ2

(P+−k−1)

Where Ṽ+N =
∑N

i=1 W+
i
′
ν̃+i ν̃

+
i
′W+

i , ν̃+ are the residuals resulting from the second step SYS GMM esti-
mator, P+ is the number of columns of W+.

4. Short Dynamic Panel Data Model With MIDAS

This section describes the approach given in [5] to estimate short dynamic panel data models in the
presence of higher frequency regressors using DIF GMM MIDAS then extends it using SYS GMM
MIDAS. The structure of the section is as follows: subsection 4.1 is dedicated to introducing the first
difference GMM with MIDAS, then SYS GMM with MIDAS is illustrated in subsection 4.2, next
modified Sargan test of overidentifying restriction is represented in subsection 4.3, finally inference
about short dynamic panel data models with MIDAS is explained in subsection 4.4.

Short dynamic panel data model with MIDAS was introduced by [5] and can be written as follows:

yit = λ yi,t−1+ xit (θ) β+ uit (4.1)
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xit (θ) =
m∑

g=1

xitgΠg (θ) (4.2)

uit = µi+νit (4.3)

Where xit (θ) is 1×K vector of K weighted observations for the explanatory variables for individual
(i) and time (t), t = 3, . . . , T represents the lower frequency time dimension, g =1, . . . , m represents
the higher frequency time dimension, xitg are 1×k vectors of higher frequency regressors observations
such that for each time point (t) there are m vectors for the regressor (i.e., xit1, . . . , xitm) corresponding
to the observation of the dependent variable (yit), Πg (θ) is a weighting function used to parameterize
the higher frequency regressor observations (xitg) to be at the same frequency as the dependent variable
(yit). In this study the exponential Almon lag function with two parameters θ = (θ1, θ2) was used, that
can be expressed as:

Πg (θ) =
egθ1+g2θ2∑m

g=1 egθ1+g2θ2
, |θ1| , |θ2| ≤1 (4.4)

Under the following assumptions:
B1. |λ|< 1.
B2. µi∼ IID

(
0, σ2

µ

)
.

B3. νit∼ IID
(
0, σ2

ν

)
.

B4. θ is settled to fixed values θo =
(
θ0,1, θ0,2

)
.

B5. E
[
µixit (θo)

]
,0.

B6. E
[
νitµi

]
= 0

B7. E
[
νityit−j

]
= 0; j = 1, . . . , t − 1.

B8. xit (θo) is partitioned to
(
xit (θo)(1), xit (θo)(2)

)
such that xit (θo)(1) is 1×K1 vector of strictly ex-

ogenous series E
[
xit (θo)(1)

′

νis

]
= 0k1 0t , s; s = 1, . . . ,Tand xit (θo)(2) is 1×K2 vector of predetermined

series satisfying E
[

xit (θo)(2)
′

νis

]
= 0k2 , t≤s.

By taking the first difference for (4.1), the model can be rewritten as follows:

∆yit = λ ∆yi,t−1+ ∆xit (θ) β+ ∆νit (4.5)

The model in (4.1) can be rewritten in matrix form as:

y = λ y−1+ X (θ) β+ u (4.6)

where X (θ) is N(T − 2)×K matrix of weighted series of K explanatory variables to be at the same
frequency of the dependent variable.

Furthermore (4.5) can be rewritten as:

y = Z (θ) δ+ u (4.7)

where Z (θ)=
[
y−1 X (θ)

]
is N(T − 2)×(K + 1) matrix.

The differenced model in (4.5) might be written in matrix form for as follows:

∆y =λ ∆y−1+∆X (θ) β+ ∆ν (4.8)
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Moreover (4.7) can be rewritten as:

∆y = ∆Z (θ) δ+ ∆ν (4.9)

Where ∆Z (θ)=
[
∆y−1 ∆X (θ)

]
is N(T − 2)×(K + 1) matrix.

4.1. First Difference GMM with MIDAS

In DIF GMM MIDAS, the matrix of valid instruments for each cross-sectional unit i depends on
the choice of the fixed values of the weighting parameters vector θo and can be partitioned into three
submatrices as follows:

Wi (θo) =
[
Wi

(
y
)
,Wi

(
x (θo)(1)

)
,Wi

(
x (θo)(2)

)]
Where Wi

(
y
)

is the same as defined in (3.9), Wi

(
x (θo)(1)

)
= diag

(
xi1 (θo)(1), . . . ,xit (θo)(1)

)
is (T − 2) × (T − 2)(T + 3)K1/2 matrix, Wi

(
x (θo)(2)

)
= diag

(
xi1 (θo)(2), . . . ,xit−1 (θo)(2)

)
is

(T − 2) × (T − 2)(T + 1)K2/2 matrix, t = 3, . . . ,T.
Both Wi

(
x (θo)(1)

)
and Wi

(
x (θo)(2)

)
are similar to Wi

(
x(1)

)
in (3.10) and Wi

(
x(2)

)
in (3.11) respec-

tively however here the explanatory variables series xitg are weighted to be at the same frequency as
the dependent variable series then the weighted series xit (θ) in (4.2) are used as instruments.

For all cross-sectional units, the matrix of valid instruments in DIF GMM MIDAS is:

W (θo) =
[

W1 (θo)
′

, . . . ,WN (θo)
′
]′

(4.10)

Where W (θo) is N(T − 2)×P matrix.
The orthogonality conditions for the instrumental variables in the DIF GMM MIDAS method are:

E
[
yi,t−s∆νit (θo)

]
= 0, t = 3, . . . , T, s = 2, . . . , T (4.11)

E
[

xis (θo)(1)
′

∆νit (θo)
]
= 0, t = 3, . . . , T , s = 1, . . . ,T (4.12)

E
[

xis (θo)(2)
′

∆νit (θo)
]
= 0, t = 3, . . . , T , s = 1, . . . ,T − 1 (4.13)

The orthogonality conditions in (49) , (4.12) and (4.13) can be expressed using the matrix of valid
instruments in (4.10) as:

M (θo) =W (θo)
′

∆ν (θo) (4.14)

Where M (θo) is P×1 vector of orthogonality conditions.
Lemma 4.1: The first step DIF GMM MIDAS for the differenced model in (4.9) is:

δ̂1 (θo) =
[
∆Z (θo)

′

W (θo)
(
W (θo)

′
(
IN

⊗
G
)

W (θo)
)−1

W (θo)
′

∆Z (θo)
]−1
×

[
∆Z (θo)

′

W (θo)
(
W (θo)

′
(
IN

⊗
G
)

W (θo)
)−1

W (θo)
′

∆y
]

Proof:
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To apply GMM on (4.9), the following quadratic formula Q (θo) has to be minimized:

Q (θo) = M (θo)
′

A (θo) M (θo) (4.15)

Where A (θo) is P×P positive definite weighting matrix.
Using (4.9) and substituting in (4.14) and (4.15), the quadratic formula in (4.15) can be rewritten

as:

Q (θo) =
[(
∆y− ∆Z (θo) δ (θo)

)′
W (θo)

]
A (θo)

[
W (θo)

′ (
∆y− ∆Z (θo) δ (θo)

)]
(4.16)

Differentiating (4.16) with respect to δ (θo) and equating it with zero to obtain δ̂ (θo) as:

widehatδ (θo) =
[
∆Z (θo)

′

W (θo) A (θo) W (θo)
′

∆Z (θo)
]−1
∆Z (θo)

′

W (θo) A (θo) W (θo)
′

∆y (4.17)

The weighting matrix in (4.15) might be taken as the inverse of the covariance matrix for moments
conditions in (4.14) as follows:

A (θo) =
[
W (θo)

′

cov (∆ν (θo)) W (θo)
]−1

(4.18)

Where cov (∆ν (θo)) is a N(T − 2)×N(T − 2) matrix that can be defined as:

cov (∆ν (θo)) = σ2
ν(θo)

(
IN

⊗
G
)

(4.19)

Using (4.19), the weighting matrix A (θo) in (4.18) can be rewritten as:

A (θo) =
1
σ2
ν(θo)

[
W (θo)

′
(
IN

⊗
G
)

W (θo)
]−1

(4.20)

Using (4.20) and substituting in (4.17), the first step DIF GMM MIDAS might be expressed as
follows:

δ̂1 (θo) =
[
∆Z (θo)

′

W (θo)
(
W (θo)

′
(
IN

⊗
G
)

W (θo)
)−1

W (θo)
′

∆Z (θo)
]−1

×

[
∆Z (θo)

′

W (θo)
(
W (θo)

′
(
IN

⊗
G
)

W (θo)
)−1

W (θo)
′

∆y
] (4.21)

To get the second step DIF GMM MIDAS, the residuals of the first-step estimation ∆̂ν (θo) is used to
estimate the covariance matrix in (4.19) where

(
W (θo)

′
(
IN

⊗
G
)

W (θo)
)

in (4.21) is replaced with

VN (θo) =
∑N

i=1 Wi (θo)
′

∆ν̂i (θo)∆ν̂i (θo)
′

Wi (θo) as follows:

δ̂2 (θo) =
[
∆Z (θo)

′

W (θo) VN (θo)−1W (θo)
′

∆Z (θo)
]−1 [
∆Z (θo)

′

W (θo) VN (θo)−1W (θo)
′

∆y
]

(4.22)

where VN (θo) is P×P matrix.
The covariance matrix of the second step DIF GMM MIDAS estimator is as follows:

̂Cov
(
δ̂2 (θo)

)
=

[
∆Z (θo)

′

W (θo) VN (θo)−1W (θo)
′

∆Z (θo)
]−1

(4.23)

Special case:
Substituting in (4.21), (4.22), and (4.23) with the higher frequency time dimension g = 1, we get the

first step DIF GMM, second step DIF GMM, covariance matrix of the second step DIF GMM defined
in (3.23), (3.24), and (3.25) respectively.
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4.2. System GMM with MIDAS

Short dynamic panel data model MIDAS approach suggested by [5] used DIF GMM, however this
study extends the same approach using SYS GMM based on two simultaneous equations the first is the
model based on levels in (4.1) and the second is the model based on first differences in (4.5).

Besides the orthogonality conditions defined in (4.11), (4.12), and (4.13) SYS GMM MIDAS can
use the following additional orthogonality conditions:

E
[
∆yi,t−1uit (θo)

]
= 0, t = 3, . . . , T (4.24)

E
[
∆xi,t−1uit (θo)

]
= 0, t = 3, . . . , T (4.25)

In SYS GMM MIDAS, the matrix of valid instruments for each cross-sectional unit i can be defined
as:

Wi (θo)+ =



Wi (θo) 0 0k 0 0k . . . 0 0k

0P [∆yi2 ∆xi2 (θo) ] 0 0k . . . 0 0k

0P 0 0k [∆yi3 ∆xi3 (θo) ] . . . 0 0k
...

...
...

...
...

. . .
...

...

0P 0 0k 0 0k . . . [∆yi,t−1 ∆xi,t−1 (θo) ]


Where 0P and 0k are 1×P and 1×K vectors of zeros respectively, Wi (θo)+ is 2(T − 2)×P+ matrix, and
P+ = (T − 2) [(T + 1)+ (T + 5) K] /2.

The vector of differenced idiosyncratic error terms ∆ν (θo) in (4.8) and the last (T − 2) elements in
the vector of error terms u in (4.7) can be stacked together as follows:

νi (θo)+= [∆νi3 (θo) , . . . , ∆νit (θo) , ui3 (θo) , . . . , uit (θo)]
′

Where νi (θo)+ is a 2(T − 2) × 1 vector.
For all cross-sectional units, the matrix of valid instruments in SYS GMM MIDAS is:

W (θo)+ =
[
W1 (θo)+

′

, . . . ,WN (θo)+
′]′

(4.26)

Where W (θo)+ is 2N(T − 2)×P+ matrix.
Similarly, νi (θo)+ can be defined for all cross-sectional units as:

ν (θo)+ =
[
ν1 (θo)+

′

, . . . , νN (θo)+
′]′

Where ν (θo)+ is 2N(T − 2)×1 vector.
The orthogonality conditions for SYS GMM MIDAS can be expressed using the matrix of valid

instruments in (4.26) as follows:
M (θo)+=W (θo)+

′

ν (θo)+ (4.27)

Where M (θo)+ is P+×1 vector.
The vector of differenced observations for the dependent variable ∆y in (4.9) and the vector of

observations for the dependent variable y in (4.7) can be stacked together as follows:

y+ = [∆y
′

y
′

]
′
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Where y+ is 2N(T − 2)×1 vector.
The matrix of differenced observations ∆Z (θo) in (4.9) and the matrix of observations Z (θo) in (4.7)

can be stacked together as follows:

Z (θo)+ = [∆Z (θo)
′

Z (θo)
′

]
′

Where Z (θo)+ is 2N(T − 2)×(K + 1) matrix.
Lemma 4.2: The first step SYS GMM MIDAS of the model in (4.7) and the differenced model in

(4.9) is:

δ̂1 (θo)
+
=

[
Z (θo)+

′

W (θo)+
(
W (θo)+

(
IN

⊗
G+

)
W (θo)+

′)−1
W (θo)+

′

Z (θo)+
]−1
×[

Z (θo)+
′

W (θo)+
(
W (θo)+

(
IN

⊗
G+

)
W (θo)+

′)−1
W (θo)+

′

y+
]

Proof:
To apply GMM on (4.7) and (4.9), the following quadratic formula has to be minimized:

Q (θo)+ = M (θo)+
′

A (θo)+ M (θo)+ (4.28)

Where A (θo)+ is a P+×P+ positive definite weighting matrix.
Using (4.9) and (4.7) then substituting in (4.27) and (4.28), the quadratic formula in (4.28) can be

rewritten as:

Q (θo)+ =
[(

y+− Z (θo)+ δ (θo)
)′

W (θo)+
]

A (θo)+
[
W (θo)+

′ (
y+− Z (θo)+ δ (θo)

)]
(4.29)

Differentiating (4.29) with respect to δ and equating it with zero to obtain δ̂ (θo)
+

as:

δ̂ (θo)
+
=

[
Z (θo)+

′

W (θo)+A (θo)+W (θo)+
′

Z (θo)+
]−1

Z (θo)+
′

W (θo)+A (θo)+W (θo)+
′

y+ (4.30)

The weighting matrix in (4.28) might be taken as the inverse of the covariance matrix for moments
conditions in (4.27) as follows:

A (θo)+ =
[
W (θo)+

′

cov
(
ν (θo)+

)
W (θo)+

]−1
(4.31)

Where cov
(
ν (θo)+

)
is a 2N(T − 2)×2N(T − 2) matrix that can be defined as:

cov
(
ν (θo)+

)
= σ2

ν(θo)

(
IN

⊗
G+

)
(4.32)

Using (4.32), the weighting matrix A (θo)+ in (4.31) can be rewritten as:

A (θo)+ =
1
σ2
ν(θo)

[
W (θo)+

′ (
IN

⊗
G+

)
W (θo)+

]−1
(4.33)

Using (4.33) and substituting in (4.30), the first step SYS GMM MIDAS can be defined as follows:

δ̂1 (θo)
+
=

[
Z (θo)+

′

W (θo)+
(
W (θo)+

(
IN

⊗
G+

)
W (θo)+

′)−1
W (θo)+

′

Z (θo)+
]−1
×[

Z (θo)+
′

W (θo)+
(
W (θo)+

(
IN

⊗
G+

)
W (θo)+

′)−1
W (θo)+

′

y+
] (4.34)
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To find the second step SYS GMM MIDAS, the residuals of the first-step estimation ν̂ (θo)+ is used to
estimate the covariance matrix in (4.32) where

(
W (θo)+

′ (
IN

⊗
G+

)
W (θo)+

)
in (4.34) is replaced with

VN (θo)+ =
∑N

i=1 Wi (θo)+
′

νi (θo)+νi (θo)+
′

Wi (θo)+as follows:

δ̂2 (θo)
+
=
[
Z (θo)+

′

W (θo)+VN (θo)+−1W (θo)+
′

Z (θo)+
]−1
×[

Z (θo)+
′

W (θo)+VN (θo)−1W (θo)+
′

y+
] (4.35)

Where VN (θo)+ is P+×P+ matrix.
The covariance matrix of the second step SYS GMM MIDAS can be estimated as:

̂Cov
(
δ̂2 (θo)

+)
=

[
Z (θo)+

′

W (θo)+VN (θo)+−1W (θo)+
′

Z (θo)+
]−1

(4.36)

Special case:
Substituting in (4.34), (4.35), and (4.36) with the higher frequency time dimension g=1, we get the

first step SYS GMM, second step SYS GMM, covariance matrix of the second step SYS GMM defined
in (3.36), (3.37), and (3.38) respectively.

Lemma 4.3: Assuming the dependent variable can be expressed by the model in (4.1), (4.2) and
(4.2) while the higher frequency regressor xitg is represented by panel AR (1) model of the lower
frequency time dimension t as follows:

xitg = ρxi,t−1,g+ηi+ϵitg (4.37)

Where t = 2, . . . , T, i = 1, . . . , N,
∣∣∣ρ∣∣∣< 1 is a scalar, xitg are 1×k vectors of higher frequency regressors

observations, xi,t−1,g are 1×k vectors of higher frequency regressors lagged observations however the lag
is in the lower frequency time dimension, ηi is fixed effects, ϵitg are error terms such that ϵitg∼ IID(0,σ2

ϵ )
and independent of uit in (4.1).

The initial conditions yi,1 and xi,1,g that satisfies mean stationarity for the SYS GMM MIDAS are as
follows:

xi,1,g =
ηi

1−ρ
+ei,1,g

yi,1 =
µi
(
1−ρ

)
+βηi

(1−ρ)(1−λ)
+wi,1

Proof:
Expressing yit in (4.1) recursively as follows:
When t=2:

yi2 = λyi1+xi2 (θ) β+ µi+νi2

When t=3:
yi3 = λ

2yi1+ [λxi2 (θ)+xi3 (θ)] β+ [λνi2+ νi3]+
[
λµi+µi

]
When t=4:

yi4 = λ
3yi1+

[
λ

2xi2 (θ)+λxi3 (θ)+xi4 (θ)
]
β+

[
λ

2
νi2+ λνi3+νi4

]
+

[
λ

2
µi+λµi+µi

]
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In general:

yit = λ
t−1

(
yi1−

µi

1−λ

)
+β

t−2∑
s=0

λ
sxi,t−s (θ)+

t−2∑
s=0

λ
s
νi,t−s+

µi

1−λ
(4.38)

Similarly, xitg in (4.37) can be expressed recursively as follows:
When t=2:

xi2g = ρxi1g+ηi+ϵi2g

When t=3:
xi3g = ρ

2xi1g+
[
ρηi+ηi

]
+

[
ρϵi2g+ϵi3g

]
When t=4:

xi4g = ρ
3xi1g+

[
ρ

2
ηi+ρηi+ηi

]
+

[
ρ

2
ϵi2g+ρϵi3g+ϵi4g

]
In general:

xitg = ρ
t−1

[
xi1g−

ηi

1−ρ

]
+
ηi

1−ρ
+

t−2∑
k=0

ρ
k
ϵi,t−k,g (4.39)

Using (4.39), the weighted explanatory variables series xit (θ) in (4.2) can be expressed as follows:

xit (θ) = ρt−1
(
xi1 (θ)−

ηi

1−ρ

)
+
ηi

1−ρ
+

t−2∑
k=0

ρ
k
ϵi,t−k,g (4.40)

Where xi1 (θ) =
∑m

g=1Πg (θ) xi1g.
Using (4.40), yit in (4.1) can be represented as:

yit =λ
t−1

[
yi1−
µi
(
1−ρ

)
+βηi(

1−ρ
)

(1−λ)

]
+
µi

(
1−ρ

)
+βηi(

1−ρ
)

(1−λ)
+

β

t−2∑
s=0

λ
s
ρ

t−s−1
[
xi1 (θ)−

ηi

1−ρ

]
+β

t−2∑
s=0

λ
s

t−s−2∑
k=0

ρ
k
ϵi,t−s−k,g+

t−1∑
s=0

λ
s
νi,t−s

(4.41)

From (4.39) and (4.41), the terms within the square brackets are the deviations of xitg and yit from their
steady state paths, therefore mean stationarity can be assured by defining the initial conditions xi1g and
yi1as:

xi,1,g =
ηi

1−ρ
+ei,1,g (4.42)

yi,1 =
µi
(
1−ρ

)
+βηi

(1−ρ)(1−λ)
+wi,1 (4.43)

4.3. Modified SARGAN Test of Overidentifying Restrictions

For short dynamic panel data models with MIDAS, [5] referred to Sargan test (subsection 3.3) as
modified Sargan test of overidentifying restrictions.

In case of DIF GMM MIDAS, modified Sargan test statistic can be expressed as:

I (θo) = ∆ν̃ (θo)
′

W (θo) VN (θo) −1 W (θo)
′

∆ν̃ (θo)∼ χ2
(P−k−1) (4.44)
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Where VN (θo) =
∑N

i=1 W
′

i (θo)∆ν̃i (θo)∆ν̃i
′

(θo) Wi (θo), and ∆ν̃ (θo) are the differenced residuals result-
ing from the second step DIF GMM MIDAS.

Sargan’s test of overidentifying restrictions for SYS GMM MIDAS can be expressed as:

I (θo)+ = ν̃ (θo)+
′

W (θo)+ VN (θo)+−1 W (θo)+
′

ν̃ (θo)+ ∼ χ2
(P+−k−1) (4.45)

WhereVN (θo)+ =
∑N

i=1 W+
i

′

(θo)∆ν̃+i (θo)∆ν̃+i
′

(θo) W+
i (θo), and ν̃ (θo)+ are the residuals resulting from

the second step SYS GMM MIDAS.

4.4. Inference About Short Dynamic Panel Data Models with MIDAS

Under the assumptions from B1 to B8, inference about the parameters of model (4.7) or (4.9) with
null hypothesis HoB:δr = δro can be carried out using the following t-test statistic:

t =
δ̂r−δro

ŝ.e
(̂
δr

) (4.46)

Where r = 1, . . . , (K + 1) such that (K + 1) is the number of parameters, δ̂r and ŝ.e
(̂
δr

)
are the cor-

responding elements of the second step DIF GMM MIDAS and the square root of the elements on
the main diagonal for the covariance matrix of the second step DIF GMM MIDAS given by (4.22)
and (4.23) respectively or the corresponding elements of the second step SYS GMM MIDAS and the
square root of the elements on the main diagonal for the covariance matrix of the second step SYS
GMM MIDAS given by (4.35) and (4.36) respectively, and t follows asymptotically standard normal
distribution.

Inference about the nuisance parameters vector θ in models (4.7) or (4.9) can be done by inverting
the modified Sargan test statistic given by (4.44) in case of DIF GMM MIDAS or by (4.45) in case
of SYS GMM MIDAS. The inversion can be carried out numerically using grid search to find the
set of all values of θ retained by the test meanwhile an empty set indicates a lack of fit. In case of
using two-parameters exponential Almon lag function for weighting, where −1≤κ1, κ2≤1, [5] used
a grid search that was constructed of an outer loop with increment 0.01 starting with -1 and ending
with 1 which gives 201 options for the first parameter, and an inner loop with the same increment and
the same number of options, making the number of alternatives for the grid search as 2012= 40401
alternatives for θ = (θ1, θ2). For each alternative, the model is fitted and orthogonality conditions are
tested using Sargan’s test where the set of pairs for (θ1, θ2) that has p-value greater than 0.05 considered
as confidence region for exponential Almon lag parameters, while the pair (θ1, θ2) and the values for
δ̂r that correspond the highest p-value (that is greater than 0.05) are considered as model estimate.

As noticed by [5], there are three alternatives to make inference about the model using grid search
as described above where these methods rely on modified Sargan test statistic or the t-test statistic:

1. The first alternative is to test the joint null hypothesis HoC: θ = θo and δ = δo relying on Sargan
test statistic I (θo, δo) where the null hypothesis is not rejected when I (θo, δo)<χ2

(p−k−1). A joint
confidence region C (θ,δ;α) can be constructed by considering all the values of θ and δ satisfying
I (θo, δo)<χ2

(p−k−1) which can be described as

C (θ,δ;α) =
{
θo, δo; I (θo, δo)<χ2

(α, p−k−1)

}
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or using the p-value of Sargan test as

C (θ,δ;α) =
{
θo, δo; pI(θo,δo)>α

}
An empty confidence region indicates a lack of fit while a point estimate is declared to be the one with
the highest p-value of Sargan test.

1. The second alternative is finding a set of parameters θosatisfying a valid specification of the model
I (θo, δo)<χ2

(p−k−1) as a preliminary step where under the null hypothesis HoD: θ = θo with a level
of significance α1.

C (θ;α1) =
{
θo; I (θo)< χ2

(α1 , (P−k−1))

}
or

C (θ;α1) =
{
θo; pI(θo)>α1

}
Then, to make inference about δ, the null hypothesis Ho: δ = δo is defined with a conservative level
of significance α = α1+α2, then a search over the retained weighting parameters set C (θ;α1)can be
performed to find the smallest t-ratio value.

tC =
inf

θϵC (θ;α1)
{|t (δo,θ)|}

Where inf is the minimum value of a given set.
The null hypothesis is not rejected when the value tC is less than the critical value at a significance

level α2 i.e., tC<tcrit(α2). The confidence interval for δ can be constructed through the set of non-rejected
values of δ by finding the smallest and largest values of the set.

C (δ;α) =
{
δo; tC<tcrit(α2)

}
Where tcrit(α2) is the corresponding standard score at level of significance α2.

1. The last alternative is to test a hypothesis about δ under the null hypothesis HoE: δ = δo with the
level of significance α where the full MIDAS parameters set θϵΘ can be searched over to find the
smallest t-ratio value.

tA =
inf
θϵΘ

{ |t(δo,θ)|}

Where Θ is the set of all alternatives of the weighting function parameters.
Similarly, the null hypothesis is not rejected when this value is less than the critical value at sig-

nificance level α, i.e., tA<tcrit(α). The confidence interval for δ can be constructed through the set of
non-rejected values of δoby finding the smallest and largest values of the set.

C (δ;α) = {δo; tA<tcrit(α)}

tcrit(α) is the corresponding standard score at level of significance α.
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5. Simulation Study

In this section, the Monte Carlo simulation is used to calculate the power and empirical size of the
t-test given by (4.46) under different alternatives for the weighting function parameters vector (θ) and
the weighted higher frequency regressor coefficient (β) to compare between DIF GMM MIDAS and
SYS GMM MIDAS.

5.1. Simulation Design

Data generating process of the simulations for the dependent variable are based on the model in
(4.1), (4.2) and (4.3) while the data generating process for the higher frequency regressor are based
on in (4.37). The choice of the model in (4.37) to be AR(1) of the lower frequency time dimension
rather than being AR(1) of the higher frequency time dimension to avoid correlation between MIDAS
weights and the remainder disturbance term as discussed in Khalaf et al. [5]. The initial conditions
were set to satisfy mean stationarity (lemma 4.3) as provided in (4.42) and (4.43).

For DIF GMM MIDAS, the simulation design was like Khalaf et al. [5] where the lagged dependent
variable coefficient λ in (39) was 0.5, the weighted higher frequency regressor coefficient β in (39) was
2, the values of the specific individual effects µi in (41) were generated from N(0, 1), the values of the
idiosyncratic error terms νit in (41) were generated from N(0, 1), the weighting function Πg (θ) used
to parametrize the higher frequency regressor in (40) was the two parameters exponential Almon lag
function in (42) with (θ1, θ2) = (0, 0.05), the coefficient of the lagged regressor ρ in (75) was 0.8, the
fixed effects ηi in (75) were set to be 0, the values of the error term ϵitg in (75) were generated from
N(0, 0.9), the number of cross-sectional units N was 500, the number of lower frequency time points
T was 5, the number of higher frequency time points m was 20, the number of replications for each
experiment was 2000 with fixed seed each runtime, the set of chosen values for the exponential Almon
lag parameters (θ1, θ2) as null hypothesis was {(0, 0.1) , (0, 0.05) , (0, 0) , (0,−0.05) , (0,−0.1)}where the
value of θ1 was fixed to 0 since the power and empirical size are much more dependent on variations in
θ2 as pointed out in [5], the set of values for β as null hypothesis was {−1, −0.5, 0, 0.5, 1, 2, 3, 4 },
the nominal size of the t-test statistic was 0.05, the power and empirical size can be estimated as
follows:

power =
a1

2000

empirical size =
a2

2000
Where a1 is the number of times the null hypothesis was rejected while it was different from the data
generating process, and a2 is the number of times the null hypothesis was rejected while it was the
same as the data generating process.

As pointed out by [18], most of the Monte Carlo studies concerning SYS GMM estimators for the
short dynamic panel data models rely on the mean stationarity as a sufficient condition for consistency
by generating T+S time observations then dropping S observations and using the rest of them where S
is more than or equal 50. The simulation design for SYS GMM MIDAS was the same as DIF GMM
MIDAS however the number of used time points T+S was 55 such that the number of dropped time
observations S was 50 while the number of lower frequency time points T was 5, additionally the
values of the error term ei,1,g in (4.42) were generated from N(0, 0.9) and the values of the error term
wi,1 in (4.43) were generated from N(0, 1).
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5.2. Simulation Results

Table 1 represents the Probability of rejecting the null hypothesis Ho: (θ1, θ2) = (θ01, θ02) and β = β0

using t-test statistic given by (4.46) in case of DIF GMM MIDAS compared to SYS GMM MIDAS.
There are 5 alternatives for the exponential Almon lag parameters (θ01, θ02) and 8 alternatives for the
coefficient of weighted higher frequency regressor (βo) with total of 40 alternatives as null hypothesis
for model parameters. The t-test provides more power in the case of SYS GMM MIDAS than DIF
GMM MIDAS while both have empirical size approximately equals to the nominal size. Most of the
power values are higher than 0.6. Low power values can be highlighted and explained as follows:

1. : Ho: (θ1, θ2) = (0, 0.05) and β= 2, the values of the empirical size of both estimators are approxi-
mately equal to the nominal size of α= 0.05.

2. : Ho: (θ1, θ2) = (0, 0) and β= 2, the value observed represents the power of the test in detecting the
false null hypothesis. According to the values of both estimators, a higher power can be detected
in SYS GMM MIDAS (0.925) compared to DIF GMM MIDAS (0.235). These results can be
explained as a product of having (θ1, θ2) = (0, 0); which is equivalent to the average of the higher
frequency data.

3. : Ho: (θ1, θ2) = (0, 0) and β= 3 or 4, the values indicate the ability of detecting that the null
hypothesis is different than the data generating process. Slightly higher power can be recognized
for the SYS GMM MIDAS compared to DIF GMM MIDAS in case of (θ1, θ2) = (0, 0) which is
equivalent to using the average to weight the higher frequency regressor.

4. : Ho: β is between -0.5 and 0.5, small power values realized when β= 0 or closer to 0 where the
MIDAS covariate xit (θ) simply disappears from the model and excluded from the matrix of in-
struments given by (4.10) or (4.26). In case of DIF GMM MIDAS, the values listed as 0.195, 0.04,
and 0.214 corresponding to β= −0.05, β= 0 and β= 0.05 respectively when (θ1, θ2) = (0,−0.05).
Also, the values 0.289, 0.038, and 0.298 corresponding to β= −0.05, β= 0 and β= 0.05 respec-
tively when (θ1, θ2) = (0,−0.1). In case of SYS GMM MIDAS, the value 0.058 correspond-
ing to β= 0 when (θ1, θ2) = (0,−0.05). Likewise, the value 0.06 corresponding to β= 0 when
(θ1, θ2) = (0,−0.1).

6. Concluding Remarks

This study is intended to examine the impact of including a higher frequency regressor(s) in the short
dynamic panel data models. The difference and system GMM estimator extensively discussed in the
balanced case and in the presence of higher frequency regressor(s).In the presence of a higher frequency
regressor, by assuming AR (1) of the lower frequency time dimension as data generating process for
the regressor(s) the initial conditions satisfying mean stationarity for SYS GMM MIDAS were derived.
A simulation study was conducted to calculate the power and empirical size of t-test statistic given
by (4.46) where SYS GMM MIDAS was found to provide more power than DIF GMM MIDAS,
additionally the average weighting corresponding to exponential Almon lag function (θ1, θ2) = (0, 0)
gave low power values, similarly testing the significance of the weighted higher frequency regressor
parameter β= 0 or close to zero had low power values.
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Table 1. Probability of Rejecting the Joint Null Hypothesis Ho: (θ1, θ2) = (θ01, θ02) and β =
β0

Ho
θ0 β0

θ01 θ02 -1 -0.5 0 0.5 1 2 3 4

DIF GMM MIDAS

0 0.1 1 1 1 1 1 0.797 1 1
0 0.05 1 1 1 1 1 0.049 1 1
0 0 0.999 0.993 0.972 0.898 0.747 0.235 0.047 0.217
0 -0.05 0.637 0.195 0.04 0.214 0.659 0.993 1 1
0 -0.1 0.798 0.289 0.038 0.298 0.807 0.999 1 1

SYS GMM MIDAS

0 0.1 1 1 1 1 1 0.998 1 1
0 0.05 1 1 1 1 1 0.052 1 1
0 0 1 1 1 1 1 0.925 0.219 0.276
0 -0.05 0.977 0.549 0.058 0.551 0.985 1 1 1
0 -0.1 0.997 0.709 0.06 0.693 0.998 1 1 1
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