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Abstract:
For modelling lifetime data from biological research and engineering, the ”Akshaya distribution” is
a model one-parameter continuous distribution that was proposed by [15]. The non-Bayesian and
Bayesian estimation methods for the Akshaya’s parameter are also presented in this study. The
weighted least square estimation (WLSE), least square estimation (LSE), Cramer-von-Mises estima-
tion (CVME), and maximum likelihood estimation (MLE), five traditional estimation approaches, are
used to find the model parameter. The parameter of the suggested distribution was also determined
using the squared error loss function and Bayesian estimating (BE) under independent gamma priors.
Finally, a simulation study is used to expound on the applicability and value of the proposed distribu-
tion.
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1. Introduction

The statistical analysis and modelling of lifetime data are significant in many practical sciences,
including those related to insurance, finance, biomedical, and engineering. As a result, many lifetime
distributions have just recently been introduced. The features, estimation methods, and geological and
medical applications of a new extended two-parameter distribution were proposed by Al-Kutubi et al.
in their paper, [1]. Furthermore, Brooks and Steven [2] provided an in-depth overview of Markov chain
Monte Carlo (MCMC) algorithms and looked at a number of implementation issues associated with
MCMC methods.
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In their 1953 life article, Epstein et al. [4] looked at statistical problems that occur when observa-
tions are made available in an organised way. Ghitany et al. [7] presented the statistical properties of
a novel, two-parameter distribution that integrated the Weibull and generalised gamma distributions.
Additionally, Ghitany et al. showed that the Lindley distribution is a better model than the exponential
distribution in their study [8]. The generalised Lindley distribution was first introduced in 2011 by
Nadarajah et al., who showed that it outperforms gamma, log-normal, Weibull, and exponential distri-
butions when taking bathtub hazard rate into account [12]. In 2021, Mahmood et al. [19] published
an enlarged Cosine generalised family of distributions for dependability modelling: characteristics and
applications with simulation analysis, and Muse et al. [20] suggested a new flexible form of the log-
logistic distribution. Citations [5], [17], and [6] in 2022 explored a family of produced distributions
with applications.

By applying adaptive type-RN1 progressive hybrid censored competing risks, Okasha and Mustafa
[13] used the E-Bayesian approach to estimate the Weibull distribution. For further detail on com-
peting risk models, see Abushal et al. [26], Ramadan et al. [27], Sarhan et al. [22], and Sarhan et
al. [21]. A new one-parameter Akash distribution that mixes exponential θ and gamma (3, θ) distribu-
tions was proposed by Rama Shanker in his paper cited in Shanker (2015). He suggested the Akshaya
distribution, which had just one parameter and outperformed the Lindley and conventional exponen-
tial distributions, for modelling lifetime data. In their study, Shanker et al. [15] demonstrated the
connections between the exponential distributions of Akash, Shanker, Lindley, and others as well as
comparative analyses of these distributions. Other papers covered approaches to parameter estimation.

Shanker is credited with developing the ”Akshaya distribution,” [15] a revolutionary one-parameter
continuous distribution that has been presented for modelling lifetime data from biological research
and engineering. Among other mathematical and statistical characteristics, its shape, moments,
hazard rate function, mean residual life function, stochastic ordering, mean deviations, and Bonferroni
and Lorenz curves have been described. The conditions under which the Akshaya distribution
is over-dispersed, equi-dispersed, and under-dispersed are explored together with some other one
parameter lifetime distributions. The methods of moments and maximum likelihood estimation for
estimating the parameter of the proposed distribution have been researched. Additionally, Ramadan et
al. [23] discussed the generalised power Akshaya distribution and its uses. Given by is the probability
density function (pdf) of the Akshaya distribution.

f (x; θ) =
θ4

θ3 + 3θ2 + 6θ + 6
(1 + x)3e−θx, x, θ > 0, (1.1)

the formula for the cumulative distribution function (CDF) is

F(x; θ) = 1 − {1 +
θ3x3 + 3θ2(θ + 1)x2 + 3θ(θ2 + 2θ + 2)x

θ3 + 3θ2 + 6θ + 6
}e−θx, x, θ > 0, (1.2)

and is followed by the hazard rate function

h(x; θ) =
θ4(1 + x)3

θ3x3 + 3θ2(θ + 1)x2 + 3θ(θ2 + 2θ + 2)x + (θ3 + 3θ2 + 6θ + 6)
, x, θ > 0. (1.3)

Equation (1.3)’s rate function is an increasing function of x and θ. However, from a methodological
perspective, the Akshaya distribution is not appropriate in many circumstances.
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In this study, Bayesian and non-Bayesian methods for parameter estimation for the Akshaya distri-
bution are introduced. In section 2, non-Bayesian inference techniques are discussed. The Bayesian
estimation process for the unknowable parameter was investigated in Section 3. Section 4 presents a
simulation exercise to illustrate the distribution’s adaptability. The conclusion is presented in Section
5.

2. Non-Bayesian Inference Methods

In this part, the parameter of the Akshaya distribution is estimated using the weighted least square
estimation, least square estimation, Cramer-von-Mises estimation, and maximum likelihood estima-
tion.

2.1. Maximum likelihood estimation method

Let (x1, x2, ..., xn) be a random sample from Akshaya distribution, then the likelihood estimation
function, L can be given as follows

L =
n∏

i=1

f (x; θ)

=
θ4n

(θ3 + 3θ2 + 6θ + 6)n e−θ
∑n

i=1 xi

n∏
i=1

(1 + xi)3,

(2.1)

and the natural log likelihood function is given by

ln(L) = n{4ln(θ) − ln(θ3 + 3θ2 + 6θ + 6)} − θ
n∑

i=1

xi +

n∑
i=1

{3ln(1 + xi)}. (2.2)

The first derivatives of the natural log likelihood function with respect to θ is given by

∂

∂θ
ln(L) =

4n
θ
−

3θ2 + 6θ + 6
θ3 + 3θ2 + 6θ + 6

−

n∑
i=1

xi, (2.3)

The maximum likelihood estimate, θ̂ of θ is the solution of the equation ∂
∂θ

ln(L) = 0 and so it can be
obtained by solving the following fourth degree polynomial equation θ4 x̄ + (3x̄ − 1)θ3 + 6(x̄ − 1)θ2 +
6(x̄ − 3)θ − 24 = 0

By setting U(θ) = 0, the probability estimates of the model parameter can be calculated. Since the
abovementioned equation is non-linear, the Newton-Raphson approach in R programming language is
used to estimate the model parameter.

2.2. Anderson and Darling (AD) method of estimation

The function with respect to the model parameter θ is minimised to provide the Anderson and
Darling estimates, which are represented as

AD(θ) = −n −
1
n

n∑
k=1

(2k − 1)(lnF(xk) + lnF̄(xn+1−k)),

where F̄(x) = 1 − F(x).
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2.3. Cramer-von-Mises (CVM) method of estimation

Another significant estimating method by Macdonald [29] is the Cramer-von Mises. By minimising
the function C(θ) with respect to the unknown parameters θ, it is possible to calculate the parameter
estimate in the Cramer-von Mises estimation technique as follows:

C(θ) =
1

12
+

n∑
k=1

[
F(xk) −

2k − 1
2n

]2

=
1

12
+

n∑
k=1

[
1 −
{

1 +
θ3x3 + 3θ2(θ + 1)x2 + 3θ(θ2 + 2θ + 2)x

θ3 + 3θ2 + 6θ + 6

}
e−θx −

2k − 1
2n

]2
.

2.4. Least square estimation (LSE) and weighted least square estimation (WLSE)

The least square and weighted least square methods of estimation are proposed by Swain et al. [28]
to estimate the parameters of Beta distribution. In LSE method, the estimates of the parameters of
the proposed model can be determined by minimizing the least square function LS (θ) with respect to
unknown parameter, where

LS (θ) =
n∑

k=1

[
F(xk) −

k
n + 1

]2

=

n∑
k=1

[
1 −
{

1 +
θ3x3 + 3θ2(θ + 1)x2 + 3θ(θ2 + 2θ + 2)x

θ3 + 3θ2 + 6θ + 6

}
e−θx −

k
n + 1

]2
.

Similar to this, the weighted least square function WLS (θ) is minimised to determine the WLSE of the
unknown parameters:

WLS (θ) =
n∑

k=1

(n + 1)2(n + 2)
k(n − k + 1)

[
F(xk) −

k
n + 1

]2

=

n∑
k=1

(n + 1)2(n + 2)
k(n − k + 1)

[
1 −
{

1 +
θ3x3 + 3θ2(θ + 1)x2 + 3θ(θ2 + 2θ + 2)x

θ3 + 3θ2 + 6θ + 6

}
e−θx −

k
n + 1

]2
.

3. Bayesian Estimation Method

In this section, the parameters θ, which are expected to follow the gamma prior distribution with
parameters a and b, are estimated using the Bayesian estimation (BE) method. The form of the gamma
prior density function is

g(u; a, b) =
ba

Γ(a)
ua−1e−ub, u, a, b > 0. (3.1)
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thus, θ’s prior density is given by

g(θ) =
n∏

i=1

g(θ) ∝ (θ)a−1e−θb. (3.2)

According to the Bayesian method, the posterior distribution function is given by

g(θ|x) =
g(θ)L(x)∫
g(θ)L(x)

∝ g(θ)L(x). (3.3)

Substituting from Equations (3.2) and (2.1) into Equation (3.3) we get

g(θ|x) ∝ (θ)a−1 θ4n

(θ3 + 3θ2 + 6θ + 6)n e−(θ(
∑n

i=1 xi+b)
n∏

i=1

(1 + xi)3. (3.4)

Without determining the normalised constant, the posterior distribution is quantitatively summarised
using the Markov Chain Monte Carlo (MCMC) method which introduced by Brooks et al. [2].

4. Simulation Study

This section uses numerically the inverse of the cumulative distribution function to produce random
data for Akshaya. When the size is n = 25, 50, and 100, the R software is used to create various
distribution samples. The experiment is run a total of 5000 times with initial values of θ = 0.5, θ = 0.7
and θ = 1.2. In this study, four quantities are looked at.

(a) Mean of the estimated values (ME) of ν̂ , ν̂ = θ̂ which equals 1
5000

∑5000
i=1 ν̂i .

(b) Average bias of the MLE (AB) of ν̂ which equals 1
5000

∑5000
i=1 (ν̂i − ν) .

(c) The mean squared error (MSE) of the MLE of ν̂ which equals 1
5000

∑5000
i=1 (ν̂i − ν)2 .

Table 1. Five classical methods and Bayesian method for estimating θ with simulated data
for sample size n = 25 and θ = 0.5.

Name MLE LSE WLSE CVME ADE BE

initial 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000

Mean 0.505167 0.503387 0.503232 0.466945 0.503102 0.505854

MSE 0.002593 0.002967 0.002817 0.006679 0.002718 0.002591

RMSE 0.050919 0.054469 0.053077 0.081727 0.052133 0.050900

Bias 0.005167 0.003387 0.003230 0.033055 0.003103 0.005854

Tables 1– 9 show that:

• As the sample size (n) increases, the absolute value of the average bias |AB| for the parameters θ
decreases.
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Table 2. Five classical methods for estimating θ with simulated data for sample size n = 50
and θ = 0.5.

Name MLE LSE WLSE CVME ADE BE

initial 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000

Mean 0.502145 0.501473 0.501383 0.462905 0.501273 0.504385

MSE 0.001231 0.001445 0.001349 0.003953 0.001323 0.001201

RMSE 0.035091 0.038011 0.036739 0.062872 0.036374 0.034659

Bias 0.002145 0.001473 0.001383 0.037095 0.001273 0.004385

Table 3. Five classical methods for estimating θ with simulated data for sample size n = 100
and θ = 0.5.

Name MLE LSE WLSE CVME ADE BE

initial 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000

Mean 0.501054 0.500511 0.500533 0.460568 0.500469 0.505549

MSE 0.000633 0.000725 0.000683 0.002727 0.0006755 0.000577

RMSE 0.025157 0.026932 0.026127 0.052217 0.025991 0.024021

Bias 0.001054 0.000511 0.000533 0.039431 0.000469 0.005549

Table 4. Five classical methods and Bayesian method for estimating θ with simulated data
for sample size n = 25 and θ = 2.

Name MLE LSE WLSE CVME ADE BE

initial 0.700000 0.700000 0.700000 0.700000 0.700000 0.700000

Mean 0.707027 0.704290 0.703999 0.654369 0.703985 0.706351

MSE 0.005329 0.006135 0.005841 0.013931 0.005623 0.004702

RMSE 0.073006 0.078326 0.076429 0.118033 0.074984 0.068574

Bias 0.007027 0.004290 0.003999 0.045630 0.003985 0.006351
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Table 5. Five classical methods for estimating θ with simulated data for sample size n = 50
and θ = 0.7.

Name MLE LSE WLSE CVME ADE BE

initial 0.700000 0.700000 0.700000 0.700000 0.700000 0.700000

Mean 0.704152 0.702613 0.702748 0.647168 0.702668 0.707342

MSE 0.002617 0.002967 0.002823 0.007762 0.002772 0.002078

RMSE 0.051157 0.054471 0.053131 0.088103 0.0526521 0.045589

Bias 0.0041512 0.002613 0.002748 0.052832 0.002668 0.007342

Table 6. Five classical methods for estimating θ with simulated data for sample size n = 100
and θ = 0.7.

Name MLE LSE WLSE CVME ADE BE

initial 0.700000 0.700000 0.700000 0.700000 0.700000 0.700000

Mean 0.703201 0.705619 0.701046 0.720688 0.716091 0.706171

MSE 0.001047 0.001906 0.000821 0.0070342 0.001972 0.001219

RMSE 0.00431 0.006436 0.004327 0.062910 0.047021 0.034924

Bias 0.002441 0.002058 0.001278 0.009212 0.0037021 0.006171

Table 7. Five classical methods for estimating θ with simulated data for sample size n = 25
and θ = 1.2.

Name MLE LSE WLSE CVME ADE BE

initial 1.200000 1.200000 1.200000 1.200000 1.200000 1.200000

Mean 1.207612 1.204980 1.204901 1.219931 1.101126 1.503112

MSE 0.007933 0.009312 0.008732 0.008574 0.025123 0.109760

RMSE 0.089051 0.096491 0.093453 0.092572 0.158492 0.331293

Bias 0.0076014 0.004987 0.004904 0.019932 0.0988771 0.303121
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Table 8. Five classical methods for estimating θ with simulated data for sample size n = 50
and θ = 1.2.

Name MLE LSE WLSE CVME ADE BE

initial 1.200000 1.200000 1.200000 1.200000 1.200000 1.200000

Mean 1.214921 1.208991 1.208653 1.234544 1.111634 1.473873

MSE 0.016991 0.019201 0.0181541 0.018852 0.040082 0.110623

RMSE 0.130382 0.138572 0.134742 0.137305 0.200211 0.332612

Bias 0.0149223 0.008993 0.008654 0.034542 0.088371 0.273860

Table 9. Five classical methods for estimating θ with simulated data for sample size n = 100
and θ = 1.2.

Name MLE LSE WLSE CVME ADE BE

initial 1.200000 1.200000 1.200000 1.200000 1.200000 1.200000

Mean 1.201261 1.218002 1.207801 1.230190 1.205421 1.451300

MSE 0.013201 0.016023 0.012503 0.013782 0.032014 0.101092

RMSE 0.107213 0.120051 0.120364 0.130163 0.208973 0.203114

Bias 0.014681 0.004573 0.004594 0.032041 0.051020 0.150240

• As the sample size (n) increases, the mean squared error (MSE) for the parameters θ decreases.

Additionally, the credible interval and 95% confidence interval for the Bayesian model for the param-
eter theta with actual values of θ = 0.5, θ = 0.7 and n = 100 can be stated as follows:
(θ̂L, θ̂U) = (0.64207, 0.78254), and (θ̂L, θ̂U) = (0.6400833, 0.7747177).

(θ̂L, θ̂U) = (0.475630.57925), and (θ̂L, θ̂U) = (0.4641415, 0.5558569). respectively

All hyper-parameters of the Bayesian technique are set to 0.001, which denotes an uninformative
prior. In order to use MCMC, the proposal was transformed into a multivariate t distribution with
four degrees of freedom, a variance-covariance matrix equal to the inverse Fisher matrix, and a mode
equal to the vector of the maximum likelihood estimates. There were also 5000 draws totaling M. As
a diagnostic test for the MCMC, we displayed the autocorrelations and traces for each parameter, as
shown in Figures refAutocorrelation plot of theta, 3 and 4. The trace plots show a reasonable mixture
of the sampled draws, and the autocorrelation plot reveals that the Lag rapidly decreases, indicating
that the draws become roughly independent with time. Figure 1 shows the plot of the posterior function
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for the parameter θ.
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Figure 1. Marginal posterior density plots for the simulated data.
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Figure 2. Autocorrelation plot for the simulated data.
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Figure 3. Trace plots for the simulated data.
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Figure 4. Cumsum plot for the simulated data.
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5. Conclusions

The five non-Bayesian approaches of MLE, AD, CVM, LSE, and WLSE are used to estimate the
parameters of the Akshaya model. Additionally, under the Square Error Loss Function, the parameter
is determined using Bayesian estimation. The effectiveness of the model is evaluated using several esti-
mation techniques. The mean of the estimated values is then displayed through the use of a simulation
study. The MLE, AD, CVM LSE, WLSE, and BE estimators of the model parameter’s average bias
and mean square error are discussed. Additionally, the parameter’s credible interval and confidence
interval are determined.
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